网上有关“穿过太阳圈:探索太阳系以外的奇异太空”话题很是火热,小编也是针对穿过太阳圈:探索太阳系以外的奇异太空寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
2012年8月,旅行者1号成为第一艘穿越太阳圈(太阳所能支配或控制的太空区域)并进入星际空间的航天器;6年之后的2018年11月,旅行者2号也离开太阳系,成为第二个进入星际空间的人造物体。
远离太阳的保护,太阳系的边缘显得无比寒冷、空旷和黑暗。在很长一段时间里,太阳系和邻近恒星之间的广阔空间也一直被认为是可怕且浩瀚的虚无。直到不久之前,人类还只能从远处窥视这些空间。天文学家对此也没有多少兴趣,而更倾向于将望远镜投向邻近的恒星、星系和星云等发光物体上。
然而,就在过去的几年里,两艘建造并发射于20世纪70年代的航天器,从这个陌生而奇异的星际空间传回了人类前所未见的景象。作为最早两个离开太阳系的人造物体,它们正 探索 着远离地球数十亿公里的未知领域,还没有其他航天器飞行过这么远的距离。这两艘航天器还揭示出,在太阳系的边界之外,存在着一片混沌而动荡的活跃区。
米歇尔·班尼斯特是新西兰坎特伯雷大学的天文学家,主要研究太阳系的外围区域。“当你观察电磁波谱的不同部分时,那部分空间完全不同于我们肉眼所感知的黑暗,”她说,“你会看到磁场在相互缠斗、推挤、连结。你可以想象尼亚加拉瀑布下方水潭的景象。”
在这里翻滚的并不是水,而是太阳风与所谓“星际介质”冲撞所造成的湍流。太阳风是一股强大的带电粒子或等离子流,从太阳朝各个方向射出;而在星际空间中存在的各种物质形式和辐射则被称为“星际介质”。
在过去的一个世纪里,科学家们已经向我们描绘了星际介质的组成,这在很大程度上要归功于射电望远镜和X射线望远镜的观测能力。它们揭示了星际介质由极度分散的电离氢原子、尘埃和宇宙射线组成,其中还散布着致密的分子气体云——被认为是新恒星的诞生地。
不过,太阳系外星际介质的确切性质在很大程度上一直是个谜,这主要是因为太阳、所有八颗行星和遥远的圆盘状柯伊伯带,都包含在一个巨大的、由太阳风形成的气状泡中,这个气状泡被称为“太阳圈”(heliosphere)。当太阳及其周围的行星快速穿过星系时,太阳圈就像一块无形的盾牌,可以缓冲星际介质,将大多数有害的宇宙射线和其他物质挡在外面。
然而,太阳圈的保护特性也让科学家更难以研究其范围以外的情况,甚至从内部确定太阳圈的大小和形状都非常困难。
“这就好比你在自己家中,想知道这个家是什么样子的,那你就必须到外面去看一看,才能真正判断出来,”美国约翰霍普金斯大学应用物理实验室的博士后研究者埃琳娜·普罗伏尼科娃(Elena Provornikova)说,“想要有所了解的唯一方法就是远离太阳,然后往回看,从太阳圈之外拍摄图像。”
旅行者1号以更直接的方式穿过太阳系,于2012年进入星际空间,旅行者2号在2018年加入它的行列。目前,它们分别离地球约209亿和177亿公里,并不断向外漂移,越来越深入太阳系以外的空间,同时发回更多的数据。
这两个老旧的探测器揭示了太阳圈和星际介质之间的边界,为我们了解太阳系如何形成,以及地球生命何以存在提供了新的线索。实际上,太阳系的边缘并没有一个清晰的边界,而是充满了翻滚的磁场、不断碰撞的恒星风、高能粒子风暴和涡旋的辐射。
2014年,太阳的活动激增,导致剧烈的太阳风席卷太空。这股冲击波以每秒800公里的速度迅速席卷了水星和金星,并在两天之后,穿过1.5亿公里的距离包裹了地球。幸运的是,地球的磁场保护了我们免受其强烈破坏性辐射的伤害。
一天之后,太阳风吹过火星,并继续穿过小行星带,冲向遥远的气态巨行星——木星、土星、天王星;两个多月后,太阳风到达了海王星,它的轨道距离太阳将近45亿公里。经过6个多月的时间,太阳风终于到达了距离太阳130多亿公里的地方,遭遇“终端激波”,并突然减速。在这里,推动太阳风的太阳磁场变得很弱,以至于星际介质可以对其施加推力。
从终端激波出来的太阳风,其传播速度不到之前的一半,就像飓风减弱为热带风暴。2015年底,这股太阳风追上了形状不规则的旅行者2号,后者的大小和一辆小 汽车 相当。旅行者2号上的传感器探测到了等离子体的激增,这项技术已经使用了40年之久,由一个缓慢衰变的钚电池提供动力。
当太阳风追上旅行者2号时,它还在太阳系的范围之内。一年多后,这阵接近消亡的太阳风终于追上了旅行者1号,它在2012年进入了星际空间。
这两个探测器选择了不同的路线,其中一个位于太阳平面上方30度的位置,另一个则位于太阳平面下方相对应的位置。太阳风爆发在不同时间到达了不同的区域,这为研究日球层顶(又称太阳风层顶)的性质提供了有用的线索。
数据显示,这一动荡边界宽度可达数几百万公里,覆盖了太阳圈表面数十亿平方公里的面积。太阳圈也大得出奇,暗示着银河系这部分的星际介质密度比原先估计的更低。太阳在星际空间中切割出一条路径,就像一艘船在水中航行一样,创造出一个“弓形激波”,并在其后方形成一道尾迹,可能带有一条(或不止一条)类似于彗星形状的尾巴。两艘旅行者号飞船都是从日球层的“鼻子”处起飞的,因此没有提供任何关于彗尾的信息。
不仅太阳风和星际风在边界区域会进行动荡的拉扯,而且粒子似乎也交换了电荷和动量。于是,部分星际介质转化为太阳风,实际上增加了气泡向外的推力。
尽管太阳风可以提供有趣的数据,但它似乎对太阳圈气泡的总体大小和形状影响很小,这有些令人意外。看起来,太阳圈外发生的事情要比太阳圈内发生的事情重要得多。太阳风的强弱可以随时间增减,而不会对气泡产生明显的影响;但如果这个气泡进入星系中星际风密度较大或较小的区域,它就会缩小或增大。
当然,还有许多问题仍然没有得到解答,比如保护我们的太阳圈气泡在宇宙中是否常见?普罗伏尼科娃表示,对太阳圈的了解越多,我们就越能清楚知道自己在宇宙中是不是孤独的。她说:“在我们自己的恒星系中进行的研究,将告诉我们其他恒星系统中生命发展的条件。”
地球生命的发展在很大程度上要感谢太阳圈阻挡了星际介质,与此同时,太阳风还阻止了来自外太空的致命辐射和高能粒子(如宇宙射线)的轰击。宇宙射线由质子和原子核组成,以接近光速的速度在太空中流动。恒星爆发、星系坍缩成黑洞以及其他灾难性的宇宙事件发生时,都会产生宇宙射线。在太阳系以外的区域,这些高速的亚原子粒子持续不断地倾泻着,其威力足以在一个不那么受保护的星球上造成致命的辐射伤害。
“旅行者号的探测明确表明,宇宙射线中有90%都被太阳过滤掉了,”美国普林斯顿大学的太阳物理学研究者杰米·兰金(Jamie Rankin)说,“如果没有太阳风的保护,我不知道我们是否还能活着。”兰金也是第一位基于旅行者号的星际数据撰写博士论文的人。
美国国家航空航天局(NASA)的另外三个探测器也将很快加入旅行者号的行列,进入星际空间。尽管其中两个探测器已经耗尽能量,并停止返回数据。当然,在巨大的太阳系边界上,这些微小的探测器即使可用,也只能提供有限的信息。幸运的是,我们可以在离地球更近的地方进行更广泛的观测。
NASA的“星际边界探测器”(Interstellar Boundary Explorer,简称IBEX)是一颗自2008年开始环绕地球运行的微型卫星,其探测目标是穿过星际边界的“高能中性原子”。IBEX还绘制了太阳圈边界周围所发生相互作用的三维地图。
杰米·兰金说:“你可以把IBEX的地图想象成某种‘多普勒雷达’,而旅行者号就像地面气象站。”她使用来自旅行者号、IBEX和其他来源的数据,分析了太阳风中较小的迸发。目前,她正在撰写一篇论文,主要探讨在2014年开始的那次规模更大的爆发。已经有证据表明,旅行者1号越过边界时,太阳圈正在缩小;但旅行者2号越过边界时,太阳圈又在扩大。
“这是一个相当动态的边界,”兰金说,“这一发现被IBEX捕捉,绘制到了三维地图中,这让我们能够同时追踪旅行者号在局部得到的反应,这简直令人惊叹。”
IBEX揭示了太阳圈边界的动态变化。在运行的第一年,它发现了一条巨大的高能原子条带蜿蜒穿过边界,而边界随时间而变化,这些特征出现和消失的时间仅为6个月。这条带状区域位于太阳圈的前端,太阳风粒子在这里被星际磁场反射回太阳系。
不过,旅行者号的故事还有一个转折。尽管它们已经离开了太阳圈,但它们仍然在太阳的影响范围之内。例如,在其他恒星系中,可以用肉眼就能看到太阳的光。太阳的引力也远远超出了太阳圈,牵制着一个遥远的,由冰、尘埃和空间碎屑组成的稀疏球体云团。这就是奥尔特云。
尽管奥尔特云漂浮在遥远的星际空间,但其中仍有许多天体围绕太阳运行。有些彗星的轨道可以一直延伸到奥尔特云,但一般认为,对于从地球发射的探测器来说,这个3000至1.5万亿公里以外的区域实在太遥远了。
自从太阳系形成以来,这些遥远的天体几乎就没有改变过,它们可能回答诸多未解难题的关键,包括行星如何形成,以及生命在宇宙中出现的可能性等等。随着每一波新数据的出现,新的谜团和问题也随之产生。
普罗伏尼科娃表示,部分或全部太阳圈可能被一层氢气覆盖,其影响尚未可知。此外,太阳圈似乎正在倾斜向一团由远古宇宙事件遗留下来的星际云。这团星际云中的粒子和尘埃会对太阳圈边界,以及生活在其中的人类有何影响,目前还无法预测。
“它可以改变太阳圈的大小,改变太阳圈的形状,”普罗伏尼科娃说,“它可能有不同的温度,不同的磁场,不同的电离和一切完全不同的参数。这非常令人兴奋,因为这是一个会产生很多发现的领域,而我们对太阳和银河系之间的这种相互作用知之甚少。”
无论发生什么,两个勇敢的旅行者号探测器都将是我们太阳系的先锋,在 探索 太空中陌生而未知的领域时,它们将揭示更多的奥秘,也将带来更多的谜题。(任天)
“地理两极和地磁两极不重合”是怎么发现的
这是霍金的建议,怕的是外星的科技比地球发达,会对地球构成威胁。
宇宙射线其实很常见,它是从遥远的天际演化过程中发射出来的,而太阳也是在不停地散发射线的。由于地球有磁场组成的“盾牌”在起保护作用,到达地球表面的宇宙射线非常有限。假如高强度宇宙射线真的发生,比如超行星爆发等产生的辐射现象,这种辐射真的很强,它对地球上所有人的伤害作用是一样大的,就如同大家在一个微波炉里面。
地球为什么存在磁场,如果没有磁场会怎样?
在利用悬缕法进行测试时,沈括发现磁针所指并非方位盘上的正南方向,其南端“常微偏东”,从而首次发现并记录了地磁偏角现象。 地球磁极又称“地磁极”。地球表面上地磁场方向与地面垂直、磁场强度最大的地方,称为地磁极。地磁极有两个(磁北极和磁南极),其位置与地理两极接近,但不重合。现代地球的磁极其地理坐标分别是:北纬76°1′,西经100°和南纬65°8′,东经139°。
在最近几百万年的时间里,地球的磁极已经发生过多次颠倒:从69万年前到目前为止,地球的方向一直保持着相同的方向,为正向期;从235万年前至69万年前,地球磁场的方向与现在相反,为反向期;从332万年前到235万年前,地球磁场为正向期;从450万年前至332万年前,地球磁场为反向期。
地球磁极是在不停的运动,下面这篇文章供你参考!
地球飞舞的盾牌
大概在2000多年前战国时代,我们的祖先就发现,天然的磁石能够稳定地指示地面的绝对方向,因此发明了司南,初步体验到了大地冥冥之中存在一种神秘力量;随后的1000年里,人们逐渐学会了在更多的领域利用这个现象,到了宋朝就已经在航海时广泛地运用灵巧的指南鱼和指南针导航,为后来的郑和与哥伦布实现远洋航海提供了重要的技术保障。随着环球航海的兴盛与电磁学的建立,人们发现指南针的奥秘全在于地球本身是一个大磁铁,正是由于这个大磁铁的磁极方向恰好稳定在接近地球自转轴的方向上,所以它的磁场方向在地球表面的大部分地区,都近似地表示了地面的南北方位。
如果说利用地磁导航对于人类来说还不是不可或缺的,因为我们还可以利用星辰和惯性等等其他方法来进行导航,那么在进入20世纪后,人们进一步发现,地球磁场其实还为人类乃至地球上的一切生命提供了至关重要的保护作用,甚至可以说,如果地球没有这个大磁铁所产生的磁场,生命就几乎没有可能在地球出现与生存下去,因为地球磁场阻挡了绝大部分的来自太空的带电“子弹雨”-宇宙射线。
地球的护生盾牌
最早让人们发现地磁场的这种保护作用的是美丽的极光。人们通过仔细地观测在高纬度地区天空常见的如九天瀑布一般的、如梦如幻的极光,发现她们是由漫天而来的宇宙高能带电粒子雨撞击大气分子而产生的发光现象。这种宇宙射线主要来自太阳,也包含来自四面八方的宇宙射线,那么在正对着太阳的赤道天空应该能够看到更多的极光现象,为什么我们只能在接近极地的高纬度地区看到呢?正是由于地磁场的作用,使得带电粒子在进入地磁场后,都顺着磁力线奔向南北两个磁极,这才使得粒子雨只降落在高纬度地区。
宇宙高能粒子在撞击生命大分子后,具有强大的破坏作用,尽管经过厚实的大气层的拦阻,但高流量的太阳风宇宙射线还是有可能直接打击到地面,那么在高纬度地区看极光岂不是非常危险?1958年2月,美国在其发射的第一颗人造卫星"探险者1"号上面就装备了专门测量宇宙射线强度的盖格计数器,解答了这个疑问。科学家们发现,卫星的高度在600公里以下时,计数器的测量结果还是正常的,但当卫星达到800公里以上的高度后,计数器马上进入饱和状态,乃至无法正常工作。由于只有在所测得的宇宙线强度比预计的大1万5千倍时,才能够导致计数器饱和,因此这个结果意味着在地球约800公里以上的高空存在一个强烈的充满了太阳风和宇宙射线的地带。美国物理学家J·A·范艾伦认为这个把整个地球包围着的高辐射地带,是由于太阳风和宇宙射线粒子在抵近地球时,被地磁场俘获而转变运动方向,从而稳定地被关闭在地球上空某一区域里形成的,因此大部分的带电粒子实际上是被地磁场滞留在这个地带,而并没有撒向大地。后来大规模的卫星探测证明了这个理论设想,还发现地球的辐射带分为内辐射带和外辐射带,它们都对称地分布在地磁场的两侧,而不是存在于高磁纬地区的上空。
更全面的卫星观测发现,地球磁层始于距离地面大约600-1000公里处,在面向太阳的一侧,磁层的磁力线也受到太阳风的影响而向地面压缩,产生一个半球形的包层,称为磁层顶区;在背向太阳的一侧则向外延伸,一直到约10倍地球半径的地方,称为磁层尾区。
所以我们还是得庆幸地球拥有一个强大的地磁场,能够让直冲地面而来的致命粒子雨偏转为围绕地球转,再泄漏一点点飞向极地,让我们能够安全地欣赏到绚丽的极光。
不过,在人们庆幸的同时却惊异地发现,这个产生了巨大地磁场来周密地保护地球的地球磁铁,实际上并不是稳定的,而是一直在地球内部运动着,其相应磁场的大小和方向都一直在发生变化。在地球过去漫长的历史当中,这种运动导致地球磁极不断发生倒转。这又令人产生一种隐忧,就是地球磁场的方向与强度的这种变化会不会影响我们的生存?毕竟它是地球上一切生命的保命盾牌啊!
斑斓的磁场
人们在世界各地记录当地的地磁场方向和强度,大概已经有了400年的历史了;后来科学家们又发现在火山熔岩和大陆与海底的地质沉积物当中,能够找到更加久远的历史上的地磁记录。所有这些数据都告诉我们,地球磁场的空间分布非常复杂,反映了它的产生机制也非常复杂,决不是可以简单地想象为由一根南北向的磁铁棒所发出的;而地磁场的方向与强度在漫长的历史当中随着时间而发生的变迁,也是充满了未解之谜。
从约400年前开始,在全球各大洋活跃的航海家们已经学会随时随地地记录地磁方向或强度;到了20世纪,科学家们更是针对性地在全球各个位置进行地磁实地测量,或者运用人造卫星从太空进行大范围观测。把所有这些数据收集起来,就可以绘制一张全球地面磁场分布的400年演变历史地图。从这张地图可以发现,在这400年间,尽管主要的南北磁极的位置也有一定的变化,但更加引人注目的,是在地表还散布着一系列相对较弱的磁极,它们主要是异性相间地沿着赤道分布,而这些磁极以平均每年约17公里的速度沿着赤道向西移动。尽管这些较弱的磁极所产生的磁场强度只有南北磁极所产生的地磁场强度的约10%,但它们应该和南北磁场具有相同的起源,而且这些弱磁极的运动,也应该和南北磁极的运动一起,构成一个整体的地球内部磁场变化的不同方面。
现在一般认为,地磁场是由处于地幔之下、地核外层的高温液态铁镍环流引起的。通过对天然或人为的地震波的测量,人们发现地核外层是温度最高的、液态的铁镍合金,高温下液态金属产生对流与环流,形成类似金属导线线圈的结构,从而产生电流与磁场。这样地球主要的南北向磁场固然表明了存在一个主要的金属环流,而地表其他位置出现的磁极,也表明还存在一些次要的能够形成磁极的金属流。因此科学家们推测,之所以沿着赤道出现弱磁极的西向移动,有两种可能的机制:一种可能性是沿着赤道方向存在一种称为赤道喷射的向西输运地核流体的过程,其中所产生的金属流导致了弱磁极的移动,而在旋转对流系统的实验室研究中,也发现了这种沿着赤道的西向输运过程;另一种可能性则是一种被称为MAC波的机制,综合了对流、磁场的不稳定性以及地球自转这三种作用,然后这种MAC波的传播导致了弱磁极的移动。
目前还难以判断到底哪种机制更加真实,对于这种弱磁极的移动是不是在整个地球历史中长期持续、以及是不是和南北主磁极以约45万年为周期进行倒转存在关联,也还存在很大的争议,因为人类对于地球内部的了解还不如对月球表面的了解多,这就使得我们不得不更加全面地去监测地球表面斑斓的磁场变化,以及寻求更多地获取来自地球深处的信息。
流浪的磁极与逍遥的地球
在弱磁极漂移的同时,主要的南北磁极同样在流浪。由于火山熔岩和沉积物的成岩年代能够通过地质学方法确定下来,这样其成岩时期所受到的磁场作用痕迹就被固化下来,然后通过对残留在火山熔岩和沉积层当中的磁场作用遗迹进行测量,就可以确定当地在某个历史时期的地磁状况。通过这种地质地磁学研究,科学家们已经对于迄今3000年和迄今5百万年这两个时间段的地磁变化有了比较详细的了解。
不过相比于在近几百年之内才开始的直接地磁测量,运用地质方法间接测量几百万年时间范围内的地磁具有一定的局限性。对于火成岩可以测量绝对的地磁场强度,但火成岩在地球分布范围有限,时间分布范围也有限;对于分布更加广泛的沉积物则只能测量相对地磁强度,而且缺乏同一个地点的长期沉积物地磁记录。一直到10年前,一组科学家首次报道了覆盖时间范围到4百万年前的沉积物地磁记录,发现在这4百万年间,地磁极发生了多次倒转,并且肯定了在20世纪60年代就已经得到的一个结论,即在磁极倒转过程中,磁场强度会减弱。而最近,在海底钻探项目(ODP)当中,通过对甚高沉降率核的分析,获得了非常清晰的迄今80万年的地磁强度记录,再次确凿表明了在地磁极倒转过程中,地磁强度会减弱。
同时另外一组科学家也找到了比火成岩更好的能够记录绝对磁场强度的样本,即一种海底玄武岩类玻璃(SBG),从而得到了迄今5百万年的绝对磁场强度记录,大大增加了我们对于这段历史的地磁演变史的知识。
这些证据提示了在地磁强度变化和地磁极位置变化之间应该具有一定的关系,而要想更加了解这种关系,就需要获得更多的同时表明了磁极位置和磁场强度的记录。最近一组科学家通过对ODP项目的样品进行分析,发现在地磁强度和地球的空间运动状态,例如其围绕太阳的轨道偏心率、轨道平面的倾斜度以及地球的进动,存在一种未必是巧合的周期性关联。尽管目前对于这个现象的解释还存在很大的争论,但不失为一个把磁极位置变化和磁场强度变化联系起来的很好线索。
一般而言,目前我们对于地磁历史的强度资料和方向资料还是没法建立太多的关联,不过这并不妨碍我们对理解地磁场的复杂起源有了更多的信心。目前越来越多的科学家相信,地磁场的方向以及强度的变化,既源自地幔底层与地核外层的相互作用,也受到地球本身自转以及轨道运动的影响,因此磁极满地球的流浪,其实和地球本身在太空的遨游密切相关。然后地球磁极方向与磁场强度的变化,又直接导致地球外部磁场的变化。可以想像,从地球诞生和围绕太阳旋转以来,她一定是飞舞着地磁场这块盾牌,且舞且行着的。不过这种舞蹈究竟对于我们在地球的生存会产生什么后果,则还有待科学家们进一步的研究。
关于地球磁场的起源的探讨,学术界科学家们先后提出了10多种学说。其中有个“发电机学说”理论,认为是地球内部的导电液体在流动时产生稳恒的电流,由这种电流产生地球磁场。这种学说在地球物理学家们观测、实验和理论研究上得到较多的证认,是研究和应用较多的地球磁场学说。
据现代科学证明,地磁(气场)对人体有很大的影响:如果人体长期顺着地磁的南北方向可使人体器官细胞有序化,产生生物磁化效应,使生物电得到加强,器官机能得到调整和增进,从而起到了良好的作用.
现今如果出现磁场消失或反转将潜在带来一场灾难,首先输电网络将造成瘫痪,同时,由于地球磁场保护生命免遭来自太阳和宇宙射线的高能粒子辐射,一旦磁场反转将导致生物基因突变,增大人们癌症的发病率。
如果不稳定磁场现象导致磁场反转,将对地球生命构成严重威胁,科学家将更多地考虑到磁场反转造成的生物效应。
关于“穿过太阳圈:探索太阳系以外的奇异太空”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[初霜]投稿,不代表世源号立场,如若转载,请注明出处:https://shiyua.com/cshi/202501-5631.html
评论列表(4条)
我是世源号的签约作者“初霜”!
希望本篇文章《穿过太阳圈:探索太阳系以外的奇异太空_1》能对你有所帮助!
本站[世源号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:网上有关“穿过太阳圈:探索太阳系以外的奇异太空”话题很是火热,小编也是针对穿过太阳圈:探索太阳系以外的奇异太空寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问...