黑洞大还是恒星大

网上有关“黑洞大还是恒星大”话题很是火热,小编也是针对黑洞大还是恒星大寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。黑洞是一种引力极强...

网上有关“黑洞大还是恒星大”话题很是火热,小编也是针对黑洞大还是恒星大寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

黑洞是一种引力极强的天体,就连光也不能逃脱。当恒星的半径小到一定程度,小于史瓦西半径时,就连垂直表面发射的光都无法逃逸了。这时恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。由于黑洞中的光无法逃逸,所以我们无法直接观测到黑洞。然而,可以通过测量它对周围天体的作用和影响来间接观测或推测到它的存在。黑洞引申义为无法摆脱的境遇。2011年12月,天文学家首次观测到黑洞“捕捉”星云的过程。黑洞

的物体,这对黑洞的存在的预言带来了进一步的鼓舞。起初贝尔和她的导师安东尼·赫维许以为,他们可能和我们星系中的外星文明进行了接触!我的确记得在宣布他们发现的讨论会上,他们将这四个最早发现的源称为LGM1-4,LGM表示“小绿人”(“Little Green Man”)的意思。然而,最终他们和所有其他人都得到了不太浪漫的结论,这些被称为脉冲星的物体,事实上是旋转的中子星,这些中子星由于在黑洞这个概念刚被提出的时候,共有两种光理论:一种是牛顿赞成的光的微粒说;另一种是光的波动说。我们现在知道,实际上这两者都是正确的。由于量子力学的波粒二象性,光既可认为是波,也可认为是粒子。在光的波动说中,不清楚光对引力如何响应。但是如果光是由粒子组成的,人们可以预料,它们正如同炮弹、火箭和行星那样受引力的影响。起先人们以为,光粒子无限快地运动,所以引力不可能使之慢下来,但是罗麦关于光速度有限的发现表明引力对之可有重要效应。

罗杰·彭罗斯在1965年和1970年之间的研究指出,根据广义相对论,在黑洞中必然存在无限大密度和空间——时间曲率的奇点。这和时间开端时的大爆炸相当类似,只不过它是一个坍缩物体和航天员的时间终点而已。在此奇点,科学定律和预言将来的能力都失效了。然而,任何留在黑洞之外的观察者,将不会受到可预见性失效的影响,因为从奇点出发的不管是光还是任何其他信号都不能到达。这令人惊奇的事实导致罗杰·彭罗斯提出了宇宙监督猜测,它可以被意译为:“上帝憎恶裸奇点。”换言之,由引力坍缩所产生的奇点只能发生在像黑洞这样的地方,在那儿它被事件视界体面地遮住而不被外界看见。严格地讲,这是所谓弱的宇宙监督猜测:它使留在黑洞外面的观察者不致受到发生在奇点处的可预见性失效的影响,但它对那位不幸落到黑洞里的可怜的航天员却是爱莫能助。广义相对论相关广义相对论方程存在一些解,这些解使得我们的航天员可能看到裸奇点。他也许能避免撞到奇点上去,而穿过一个“虫洞”来到宇宙的另一区域。看来这给空间——时间内的旅行提供了巨大的可能性。但是不幸的是,所有这些解似乎都是非常不稳定的;最小的干扰,譬如一个航天员的存在就会使之改变,以至于他还没能看到此奇点,就撞上去而结束了他的时间。换言之,奇点总是发生在他的将来,而从不会在过去。强的宇宙监督猜测是说,在一个现实的解里,奇点总是或者整个存在于将来(如引力坍缩的奇点),或者整个存在于过去(如大爆炸)。因为在接近裸奇点处可能旅行到过去,所以宇宙监督猜测的某种形式的成立是大有希望的。

在恒星引力坍缩形成黑洞时,运动会更快得多,这样能量被带走的速率就高得多。所以不用太长的时间就会达到不变的状态。人们会以为它将依赖于形成黑洞的恒星的所有的复杂特征——不仅仅它的质量和转动速度,而且恒星不同部分的不同密度以及恒星内气体的复杂运动。如果黑洞就像坍缩形成它们的原先物体那样变化多端,一般来讲,对之作任何预言都将是非常困难的。

然而,加拿大科学家外奈·伊斯雷尔在1967年使黑洞研究发生了彻底的改变。他指出,根据广义相对论,非旋转的黑洞必须是非常简单、完美的球形;其大小只依赖于它们的质量,并且任何两个这样的同质量的黑洞必须是等同的。事实上,它们可以用爱因斯坦的特解来描述,这个解是在广义相对论发现后不久的1917年卡尔·施瓦兹席尔德找到的。一开始,许多人(其中包括伊斯雷尔自己)认为,既然黑洞必须是完美的球形,一个黑洞只能由一个完美球形物体坍缩而形成。所以,任何实际的恒星从来都不是完美的球形只会坍缩形成一个裸奇点。

然而,对于伊斯雷尔的结果,一些人,特别是罗杰·彭罗斯和约翰·惠勒提倡一种不同的解释。他们论证道,牵涉恒星坍缩的快速运动表明,其释放出来的引力波使之越来越近于球形,到它终于静态时,就变成准确的球形。按照这种观点,任何非旋转恒星,不管其形状和内部结构如何复杂,在引力坍缩之后都将终结于一个完美的球形黑洞,其大小只依赖于它的质量。这种观点得到进一步的计算支持,并且很快就为大家所接受。

黑洞是科学史上极为罕见的情形之一,在没有任何观测到的证据证明其理论是正确的情形下,作为数学的模型被发展到非常详尽的地步。的确,这经常是反对黑洞的主要论据:怎么能相信一个其依据只是基于令人怀疑的广义相对论的计算的对象呢?然而,1963年,加利福尼亚的帕罗玛天文台的天文学家马丁·施密特测量了在称为3C273(即是剑桥射电源编目第三类的273号)射电源方向的一个黯淡的类星体的红移。他发现引力场不可能引起这么大的红移——如果它是引力红移,这类星体必须具有如此大的质量,并离地球如此之近,以至于会干扰太阳系中的行星轨道。这暗示此红移是由宇宙的膨胀引起的,进而表明此物体离地球非常远。由于在这么远的距离还能被观察到,它必须非常亮,也就是必须辐射出大量的能量。人们会想到,产生这么大量能量的唯一机制看来不仅仅是一个恒星,而是一个星系的整个中心区域的引力坍缩。人们还发现了许多其他类星体,它们都有很大的红移。但是它们都离开地球太远了,所以对之进行观察太困难,以至于不能。

编辑本段专家研究黑洞等离子体德国在实验室制造出黑洞等离子体

德国马克斯普朗克核物理研究所和赫尔姆霍茨柏林中心的研究人员使用柏林同步加速器(BESSY Ⅱ)在实验室成功产生了黑洞周边的等离子体。通过该研究,之前只能在太空由人造卫星执行的天文物理实验,也可以在地面进行,诸多天文物理学难题有望得到解决。 黑洞的重力很大,会吸附一切物质。进入黑洞后,任何东西都不可能从黑洞的边界之内逃逸出来。随着被吸入的物体的温度不断升高,会产生核与电子分离的高温等离子体。

黑洞吸附物质会产生X射线,X射线反过来又会刺激其中的大量化学元素发射出具有独特线条(颜色)的X射线。分析这些线条可以帮助科学家了解更多有关黑洞附近等离子体的密度、速度和组成成分等信息。

在这个过程中,铁起了非常关键的作用。尽管铁在宇宙中的储量并不如更轻的氢和氦丰富,但是,它能够更好地吸收和重新发射出X射线,发射出的光子因此也比其他更轻的原子发射出的光子具有更高的能量、更短的波长(使得其具有不同的颜色)。

铁发射出的X射线在穿过黑洞周围的介质时也会被吸收。在这个所谓的光离化过程中,铁原子通常会经历几次电离,其包含的26个电子中有超过一半会被去除,最终产生带电离子,带电离子聚集成为等离子体。而现在,研究人员在实验室中重现了这个过程。

实验的核心是马克斯普朗克核物理研究所设计的电子束离子阱。在这个离子阱中,铁原子经由一束强烈的电子束加热,从而被离子化14次。实验过程如下:一团铁离子(仅仅几厘米长并且像头发丝一样薄)在磁场和电场的作用下被悬停在一个超高真空内,同步加速器发射出的X射线的光子能量被一台精确性超高的“单色仪”挑选出来,作为一束很薄但却集中的光束施加到铁离子上。

实验室测量到的光谱线与钱德拉X射线天文台和牛顿X射线多镜望远镜所观测的结果相匹配。也就是说,研究人员在地面实验室人为制造出了太空中的黑洞等离子体。

这种新奇的方法将带电离子的离子阱和同步加速器辐射源结合在一起,让人们可以更好地了解黑洞周围的等离子体或者活跃的星系核。研究人员希望,将EBIT分光检查镜和更清晰的第三代(2009年开始在德国汉堡运行的同步辐射源PETRAⅢ)、第四代(X射线自由电子激光XFEL)X射线源结合,将能够给该研究领域带来更多新鲜活力。美国制成“人造黑洞”2005年3月18日英国《卫报》报道,美国布朗大学物理教授‘霍拉蒂·纳斯塔西’在地球上制造出了第一个“人造黑洞“。美国纽约布鲁克海文实验室七年前建造了当时全球最大的粒子加速器,将金离子以接近光速对撞而制造出高密度物质。虽然这个黑洞体积很小,却具备真正黑洞的许多特点。纳斯塔西介绍说,纽约布鲁克海文国家实验室里的相对重离子碰撞机,可以以接近光速的速度把大型原子的核子(如金原子核子)相互碰撞,产生相当于太阳表面温度3亿倍的热能。纳斯塔西在纽约布鲁克海文国家实验室里利用原子撞击原理制造出来的灼热火球,具备天体黑洞的显著特性。比如:火球可以将周围10倍于自身质量的粒子吸收,这比目前所有量力物理学所推测的火球可吸收的粒子数目还要多。

人造黑洞的设想最初由加拿大“不列颠哥伦比亚大学”的威廉·昂鲁教授在20世纪80年代提出,他认为声波在流体中的表现与光在黑洞中的表现非常相似,如果使流体的速度超过声速,那么事实上就已经在该流体中建立了一个人造黑洞。然而,利昂哈特博士打算制造的人造黑洞由于缺乏足够的引力,除了光线外,它们无法像真正的黑洞那样“吞下周围的所有东西”。然而,纳斯塔西教授制造的人造黑洞已经可以吸收某些其他物质。因此,这被认为是黑洞研究领域的重大突破。欧洲“人造黑洞”2008年9月10日,随着第一束质子束流贯穿整个对撞机,欧洲大型强子对撞机正式启动。曾有人担心建于欧洲日内瓦的世界最大‘大型强子对撞机’会制造出黑洞吞噬地球生物(新闻报道,印度一女孩曾因为担心欧洲大型强子对撞机会制出黑洞毁灭地球而自杀)。尽管欧洲的科学家一再解释这个不会对地球造成威胁,但大型强子对撞机就相当于一个‘人造黑洞’制造机器。

欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,它位于瑞士日内瓦近郊欧洲核子研究组织CERN的粒子加速器与对撞机,作为国际高能物理学研究之用。系统第一负责人是英国著名物理学家‘林恩·埃文斯’,大型强子对撞机最早就是由他设想出来并主导制造的。埃文斯博士是英国威尔士一位矿工的孩子,当他还是孩子时就表示要做惊天动地的事情。果然没有失言,他终于负责打造出了令世界瞩目的世界最强大的机器――大型强子对撞机,为此他被外界称为“埃文斯原子能”。

当比我们的太阳更大的特定恒星在生命最后阶段发生爆炸时,自然界就会形成黑洞。它们将大量物质浓缩在非常小的空间内。假设在大型强子对撞机内的质子相撞产生粒子的过程中,形成了微小黑洞,每个质子拥有的能量可跟一只飞行中的蚊子相当。天文学上的黑洞比大型强子对撞机能产生的任何东西的质量更重。据爱因斯坦的相对论描述的重力性质,大型强子对撞机内不可能产生微小黑洞。然而一些纯理论预言大型强子对撞机能产生这种粒子产品。所有这些理论都预测大型强子对撞机产生的此类粒子会立刻分解。因此它产生的黑洞将没时间浓缩物质,产生肉眼可见的结果。中国的人造电磁黑洞中国科学家造出第一个“人造电磁黑洞”

它有着“黑洞”之名,虽然尺寸“迷你”,但任何经过的电磁波或光,都不可能逃离它的引力。2009年10月15 日,《科学》杂志宣布,世界上第一个“可吸收电磁波的微波人造黑洞”在中国东南大学实验室里诞生。

不过,这个小型“黑洞”不仅不会毁灭世界,还能帮助人们更好地吸收太阳能。

在宇宙中,黑洞吞噬万物,甚至包括光。人们乐意议论这种天体,因为它神秘、“性情”怪异:它身处宇宙最幽暗的地方,没有人能直接观测到它,而靠近它的任何物质,都会被无情地拖曳到它的深渊里,小行星、星尘、光波、时间,无一例外。

人们对黑洞这种天体感到好奇,但绝不会希望有任何一个黑洞接近自己,或我们的星球。然而现在却有一些科学家在自己的实验室里造出了一个“迷你小型”黑洞。

2009年10 月15 日的《科学》杂志在介绍这种“人造黑洞”时建议,人们可以把这种“黑洞”装进自己的大衣口袋里。

制造出“人造黑洞”的是中国东南大学的一个研究组,崔铁军教授和程强教授是其中最主要的两位研究者。

“实际上,我们做的黑洞不是严格意义上的黑洞。”在接受《外滩画报》采访时,程强教授对记者说。

实验室里的“人工黑洞”,目的当然不是为了将一个吞噬一切的“恶魔”装进口袋。据程强介绍,现在存在于东南大学毫米波国家实验室的“人造黑洞”,实际上是一个模拟装置,这种模拟装置目前可以吸收微波频段的电磁波,在未来,它还可以吸收光。

但是除此之外,它并不能吸收任何实质的东西。“它只吸收电磁波,不吸收能量。”程强对记者说。崔铁军(左一)、程强在“人造电磁黑洞”实验装置前(东南大学资料图 丛 婕摄)

这是一个不具有危险性的“黑洞”,不仅如此,这种装置还能在未来用于收集太阳能。在这方面,“人造黑洞”将比世界上任何一种太阳能电池板都更高效。

“我们的确是受到他的论文的启发,但研究本身是我们独立完成的。”程强对记者说。

之所以能这么快将之变成现实,是因为他们所在的实验室也一直从事着这方面的研究,在理论和实验两方面都积累了很多年的经验,实验过程中也用到了很多他们自己的独创性想法。

不过虽然名为“黑洞”,他们受纳瑞马诺维启发而造的“黑洞”,和真正存在于宇宙中的黑洞还是有大差别的,这种差别并不仅仅体现在质量的大小上。两种“黑洞”的原理其实并不一样。

宇宙间的黑洞之所以能吞噬一切,是因为它质量巨大,而实验室里的“黑洞”,实际上是根据光波在被吸进宇宙黑洞时的性质,模拟出来的仪器,可以令光波接近时产生相似的扭曲,并被吸引。

也就是说,两种“黑洞”可以让附近的光波出现相似的“结局”,但是光波遇到的却并不是同一回事。

恒星是由炽热气体组成的,是能自己发光的球状或类球状天体。由于恒星离我们太远,不借助于特殊工具和方法,很难发现它们在天上的位置变化,因此古代人把它们认为是固定不动的星体。我们所处的太阳系的主星太阳就是一颗恒星。

恒星结构

恒星都是气体星球。晴朗无月的夜晚,且无光污染的地区,一般人用肉眼大约可以看到6000多颗恒星,借助于望远镜,则可以看到几十万乃至几百万颗以上。估计银河系中的恒星大约有1500-2000亿颗,我们所处的太阳系的主星太阳就是一颗恒星。恒星的两个重要的特征就是温度和绝对星等。大约100年前,丹麦的艾依纳尔·赫茨普龙(Einar Hertzsprung)和美国的享利·诺里斯·罗素(Henry Norris Russell )各自绘制了查找温度和亮度之间是否有关系的图,这张关系图被称为赫罗图,或者H—R图。在H-R图中,大部分恒星构成了一个在天文学上称作主星序的对角线区域;在主星序中,恒星的绝对星等增加时,

恒星的演变

其表面温度也随之增加。90%以上的恒星都属于主星序,太阳也是这些主星序中的一颗。巨星和超巨星处在H—R图的右侧较高较远的位置上;白矮星的表面温度虽然高,但亮度不大,所以他们只处在该图的中下方。

恒星演化是一个恒星在其生命期内(发光与发热的期间)的连续变化。生命期则依照星体大小而有所不同。单一恒星的演化并没有办法完整观察,因为这些过程可能过于缓慢以致于难以察觉。因此天文学家利用观察许多处于不同生命阶段的恒星,并以计算机模型模拟恒星的演变。

天文学家赫茨普龙和哲学家罗素首先提出恒星分类与颜色和光度间的关

恒星——赫罗图

系,建立了被称为“赫-罗图的”恒星演化关系,揭示了恒星演化的秘密。“赫-罗图”中,从左上方的高温和强光度区到右下的低温和弱光区是一个狭窄的恒星密集区,我们的太阳也在其中;这一序列被称为主星序,90%以上的恒星都集中于主星序内。在主星序区之上是巨星和超巨星区;左下为白矮星区。

恒星是大质量、明亮的等离子体球。太阳是离地球最近的恒星,也是地球能量的来源。白天由于有太阳照耀,无法看到其他的恒星;只有在夜晚的时间,才能在天空中看见其他的恒星。恒星一生的大部分时间,都因为核心的核聚变而发光。核聚变所释放出的能量,从内部传输到表面,然后辐射至外太空。几乎所有比氢和氦更重的元素都是在恒星的核聚变过程中产生的。恒星天文学是研究恒星的科学。

天文学家经由观测恒星的光谱、光度和在空间中的运动,可以测量恒星的质量、年龄、金属量和许多其他的性质。恒星的总质量是决定恒星演化和最后命运的主要因素。其他特征,包括 直径、自转、运动和温度,都可以在演变的历史中进行测量。描述许多恒星的温度对光度关系的图,也就是赫罗图(HR图),可以测量恒星的年龄和演化的阶段。

恒星诞生于以氢为主,并且有氦和微量其他重元素的云气坍缩。一旦核心有足够的密度,有些氢就可以经由核聚变的过程稳定的转换成氦[1]。恒星内部多余的能量经过辐射和对流组合的携带作用传输出来;恒星内部的压力则阻止了恒星在自身重力下的崩溃。一旦在核心的氢燃料耗尽,质量不少于0.5太阳质量的恒星[2],将膨胀成为红巨星,在某些情况下更重的化学元素会在核心或包围着核心的几层燃烧。这样的恒星将发展进入简并状态,部分被回收进入星际空间环境的物质,将使下一代恒星诞生时正元素的比例增加[3]。

恒星并非平均分布在星系之中,多数恒星会彼此受引力影响而形成聚星,如双星、三合星、甚至形成星团等由数万至数百万计的恒星组成的恒星集团。当两颗双星的轨道非常接近时,其引力作用或会对它们的演化产生重大的影响[4],例如一颗白矮星从它的伴星获得吸积盘气体成为新星。形成在宇宙发展到一定时期,宇宙中充满均匀的中性原子气体云,大体积气体云由于自身引力而不稳定造成塌缩。这样恒星便进入形成阶段。在塌缩开始阶段,气体云内部压力很微小,物质在自引力作用下加速向中心坠落。当物质的线度收缩了几个数量级后,情况就不同了,一方面,气体的密度有了剧烈的增加,另一方面,由于失去的引力位能部分的转化成热能,气体温度也有了很大的增加,气体的压力正比于它的密度与温度的乘积,因而在塌缩过程中,压力增长更快,这样,在气体内部很快形成一个足以与自引力相抗衡的压力场,这压力场最后制止引力塌缩,从而建立起一个新的力学平衡位形,称之为星坯。

星坯的力学平衡是靠内部压力梯度与自引力相抗衡造成的,而压力梯度的存在却依赖于内部温度的不均匀性(即星坯中心的温度要高于外围的温度),因此在热学上,这是一个不平衡的系统,热量将从中心逐渐地向外流出。这一热学上趋向平衡的自然倾向对力学起着削弱的作用。于是星坯必须缓慢的收缩,以其引力位能的降低来升高温度,从而来恢复力学平衡;同时也是以引力位能的降低,来提供星坯辐射所需的能量。这就是星坯演化的主要物理机制。

最新观测发现S1020549恒星

下面我们利用经典引力理论大致的讨论这一过程。考虑密度为ρ、温度为T、半径为r的球状气云系统,气体热运动能量:

ET= RT= T

(1) 将气体看成单原子理想气体,μ为摩尔质量,R为气体普适常数

为了得到气云球的的引力能Eg,想象经球的质量一点点移到无穷远,将球全部移走场力作的功就等于-Eg。当球质量为m,半径为r时,从表面移走dm过程中场力做功:

dW=- =-G( )1/3m2/3dm

(2) 所以:-Eg=- ( )1/3m2/3dm= G( M5/3

于是:Eg=- (2),

气体云的总能量:E=ET+EG (3)

灵魂星云将形成新的行星

热运动使气体分布均匀,引力使气体集中。现在两者共同作用。当E>0时热运动为主,气云是稳定的,小的扰动不会影响气云平衡;当E<0时,引力为主,小的密度扰动产生对均匀的偏离,密度大处引力增大,使偏离加强而破坏平衡,气体开始塌缩。由E≤0得到产生收缩的临界半径:

(4) 相应的气体云的临界质量为:

(5) 原始气云密度小,临界质量很大。所以很少有恒星单独产生,大部分是一群恒星一起产生成为星团。球形星团可以包含10^5→10^7个恒星,可以认为是同时产生的。

我们已知:太阳质量:MΘ=2×10^33,半径R=7×10^10,我们带入(2)可得出太阳收缩到今天这个状态以释放的引力能

稳定期主序星阶段在收缩过程中密度增加,我们知道ρ∝r-3,由式(4),rc∝r3/2,所以rc比 r减小的更快,收缩气云的一部分又达到新条件下的临界,小扰动可以造成新的局部塌缩。如此下去在一定的条件下,大块气云收缩为一个凝聚体成为原恒星,原恒星吸附周围气云后继续收缩,表面温度不变,中心温度不断升高,引起温度、密度和气体成分的各种核反应。产生热能使气温升的极高,气体压力抵抗引力使原恒星稳定下来成为恒星,恒星的演化是从主序星开始的。

哈勃观测到两颗燃烧剧烈的超级恒星

恒星的成份大部分是H和He,当温度达到104K以上,即粒子的平均热动能达1eV以上,氢原子通过热碰撞就充分的电离了(氢的电离能是13.6eV),在温度进一步升高后,等离子气体中氢核与氢核的碰撞就可能引起核反应。对纯氢的高温气体,最有效的核反应系列是所谓的P-P链:

其中主要是2D(p,γ)3He反应。D含量只有氢的10-4左右,很快就燃完了。如果开始时D比3He含量多,则反应生成的3H可能就是恒星早期3He的主要来源,由于对流到达恒星表面的这种3He,有可能还保留到现在。

Li,Be,B等轻核和D一样结合能很低,含量只是H 的2×10-9K左右,当中心温度超过3×106K就开始燃烧,引起(p,α)和(p,α)反应,很快成为3He和4He。中心温度达到107K,密度达到 105kg/m3左右时,产生的氢转化为He的41H→4He过程。这主要是p-p和CNO循环。同时含有1H和4He是发生p-p链反应,有以下三个分支组成:

p-p1(只有1H) p-p2(同时有1H、4He) p-p3

或假设1H 和4He的重量比相等。随温度升高,反应从p-p1逐渐过渡到p-p3,

而当T>1.5×107K时,恒星中燃烧H的过程就可过渡到以CNO循环为主了。

当恒星内混杂有重元素C和N时,他们能作为触媒使1H变为4He,这就是CNO循环,CNO循环有两个分支:

或总反应率取决于最慢的14N(p,γ)15O、15N的(p,α)和(p,γ)反应分支比约为2500:1。

这个比值几乎与温度无关,所以在2500次CNO循环中有一次是CNO-2。

在p-p链和CNO循环过程中,净效果是H燃烧生成He:

在释放出的26.7MeV能量中,大部分消耗给恒星加热和发光,成为恒星的主要来源。

前面我们提到恒星的演化是从主星序开始的,那么什么是主星序呢?等H稳定地燃烧为He时,恒星就成了主序星。人们发现有百分之八十至九十的恒星都是主序星,他们共同特征是核心区都有氢正在燃烧,他们的光度、半径和表面温度都有所不同,后来证明:主序星的定量上差别主要是质量不同,其次是他们的年龄和化学成份,太阳这段历程约千万年。

观察到的主序星的最小质量大约为0.1M⊙。模型计算表明,当质量小于0.08M⊙时,星体的收缩将达不到氢的点火温度,从而形不成主序星,这说明对于主序星它有一个质量下限。观察到的主序星的最大质量大约是几十个太阳质量。理论上讲,质量太大的恒星辐射很强,内部的能量过程很剧烈,因此结构也越不稳定。但是理论上没有一个质量的绝对上限。

当对某一星团作统计分析时,人们却发现主序星有一个上限,这说明什么?我们知道,主序星的光度是质量的函数,这函数可分段的用幂式表示:

L∝Mν

其中υ不是一个常数,它的值大概在3.5到4.5之间。M大反映主序星中可供燃烧的质量多,而L大反映燃烧的快,因此主序星的寿命可近似用M与L的商标来标志:

T∝M-(ν-1)

即主序星寿命随质量增大而按幂律减小,如果整个星团已存在的年龄为T,那就可以由T与M的关系式求出一个截止质量MT。质量大于MT的主序星已结束核心的H燃烧阶段而不是主序星了,这就是观察到由大量同年龄星组成的星团有上限的原因。

现在我们就讨论观测到的恒星中大部分是主序星的原因,表1根据一25M⊙的恒燃烧阶段点火温度(K) 中心温度(g. cm-3) 持续时间(yr)

H 4×107 4 7×106

He 2×108 6×102 5×105

C 7×108 6×105 5×102

Ne 1.5×109 4×106 1

O 2×109 1×107 5×10-2

Si 3.5×109 1×108 3×10-3

燃烧阶段的总寿命7.5×106

小质量的恒星(如太阳),起先会膨胀,在这个阶段的恒星我们称之为红巨星,然后会塌缩,变成白矮星,再成为黑矮星,最终消失。

化学组成以质量来计算,恒星形成时的比率大约是70%的氢和28%的氦,还有少量的其他重元素。因为铁是很普通的元素,而且谱线很容易测量到,因此典型的重元素测量是根据恒星大气层内铁含量。由于分子云的重元素丰度是稳定的,只有经由超新星爆炸才会增加,因此测量恒星的化学成分可以推断它的年龄。重元素的成份或许也可以显示是否有行星系统。

已经找到一个黑洞了吗?

有啊,现在的理论已经证明了,你可以再找相关资料看一下.宇宙黑洞包括物理黑洞和暗能量黑洞两种。物理黑洞有巨大的质量,但暗能量黑洞只有巨大的暗能量而没有巨大的质量。目前每个星系中心的黑洞都是暗能量黑洞。暗能量黑洞的引力与它内部的暗能量和它的旋转速度的乘积成正比,与它的体积成反比。1.宇宙黑洞的研究现状

天文学家通过长期观测发现,在宇宙中有一些引力非常大却又看不到任何天体的区域,称之为黑洞。黑洞是位居宇宙空间和时间构造中的一些深不见底的类似井状的东西,具有极大的吸引力,包括光在内的任何物体都无法逃脱被吸入的命运。这就使得人们对于黑洞的研究变得异常困难:它既不向外散发能量,也不表现出任何形式的能量,人们根本无法看到它。因此,人们对于黑洞的研究就象是对一种看不见的东西进行研究。

科学家们认为,黑洞由一颗或多颗天体坍缩形成,当一颗质量相当大的星体核能(氢)耗尽后,没有辐射压力去抵抗重力,平衡态不再存在时,这个星体将全面塌缩。质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。根据科学家的计算,当中子星的总质量超过三倍太阳的质量时将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。若其质量仍大于3个太阳质量时,那么连中子的气体压力也不能平衡重力,星体将继续塌缩至它的重力半径范围之内。这时,引力之大足以使一切粒子,包括光子,都被引回星体本身,不能外逸,就形成了引力极强的黑洞。黑洞可以吞噬附近的一切物质,它先将物质吸引到附近围绕它们高速旋转;随着转速的加快,物质变为炙热的等离子体,并逐渐靠近黑洞旋转中心;当它们最终接近黑洞时,就会被吞噬。

通常,黑洞是无法被发现的,但是也有例外:如果在它附近有气团,则会产生飞向黑洞的气流,于是气流也暴露了黑洞的位置。众所周知,在压缩时气体物质会被加热到几百万度,同时产生强烈的X射线辐射。用X射线观测望远镜就可以探测到黑洞的存在。2004年,著名的“钱德拉”X射线观测望远镜发现了一颗巨大黑洞的X射线,并将其命名为“SDSSpJ306”,它位于距离我们地球26亿光年的MS0735星团。天文学家通过对这些X射线和其所在星系的重力影响一起进行检测,推测它“出生”于127亿年前———而宇宙大爆炸发生在137亿年前。这说明,黑洞与星系同时演化,两者谁也不会单独主导早期宇宙中星体的快速诞生。 在此次观测中,天文学家们还在处于星系中心的“SDSSpJ306”黑洞的周围发现了许多新生星体,而且更多的星体正在形成之中。该发现给新出现的星系形成演化理论提供了重要的直接证据。

科学家们认为,黑洞是有质量的。黑洞一般被旋转的热气体圆盘所包围,这些热气体在以螺旋运动逐渐被黑洞吸收时会发出大量的电磁辐射。黑洞附近发光的氢原子谱线宽度与旋转速度有关。旋转速度越快,氢原子发出的谱线越宽,说明黑洞的质量越大。通过对氢原子谱线研究发现,“SDSSpJ306”黑洞有10亿个太阳重,所产生的能量更是太阳的20万亿倍。这个黑洞如此之大,以致它的引力作用范围大小与银河系相当。在这个黑洞吞噬星团的同时,还将一些热气体以射流形式喷还给宇宙,形成了两个巨大洞穴,每个洞穴的直径大约为65万光年。黑洞再次喷发出来的气体质量,相当于1万亿个太阳质量,这种喷射已经持续了1亿年之久。

黑洞有大有小。超巨黑洞的质量达到太阳的数百万甚至数十亿倍。小黑洞的质量与太阳基本处于一个数量级,主要由质量相当于太阳10倍左右的恒星发生超新星爆炸形成。超巨黑洞位于星系中心,据推测每个星系都有,质量一般约为星系总质量的0.5%。2002年10月,欧洲科学家宣布了银河系中心存在超巨黑洞的最佳证据。他们说,过去20年中,科学家们一直在观测银河系中心一些星体的活动情况,尤其对一颗名为S2的星体的运行轨道进行了跟踪研究,最终得出结论:S2附近确实存在一个巨型黑洞。质量是太阳7倍的S2,以每小时1.8亿公里的高速每15.2年绕银河系中心一周。之所以如此高速,是因为它周围存在黑洞,“害怕”被黑洞“吞噬”。经过计算,这一黑洞距地球2.6万光年,质量是太阳的370万倍。 银河系中心黑洞每年“食量”不足地球质量的1%。黑洞“食量”是根据它吞噬“食物”时发出X射线的强弱程度计算出来的。科学家还提出,如果黑洞获得了源源不断的“食物供给”,就可能从相对安静的状态中“醒来”,处于活跃状态中。

2.黑洞的种类

按组成来划分,黑洞可以分为两大类。一是暗能量黑洞,二是物理黑洞。暗能量黑洞主要由高速旋转的巨大的暗能量组成,它内部没有巨大的质量。巨大的暗能量以接近光速的速度旋转,其内部产生巨大的负压以吞噬物体,从而形成黑洞。暗能量黑洞是星系形成的基础,也是星团、星系团形成的基础。物理黑洞由一颗或多颗天体坍缩形成,具有巨大的质量。当一个物理黑洞的质量等于或大于一个星系的质量时,我们称之为奇点黑洞。暗能量黑洞的体积很大,可以有太阳系那般大。但物理黑洞的体积却非常小,它可以缩小到一个奇点。

3.暗能量黑洞的形成

根据科学家们的推算,宇宙大爆炸大约发生在137亿年以前。宇宙大爆炸之后,就形成了宇宙。它由两部分组成。一是由暗能量组成的世界,称之为黑暗世界;二是物质组成的世界,称之为物质世界。黑暗世界以旋涡场的形式存在,整个宇宙空间都被各种不同大小的旋涡场所充满。而物质世界则主要是以宇宙尘埃的形式存在,它们不均匀分布在各个旋涡场之中。在一个如星系般大小的旋涡场中,以Ep来表示宇宙尘埃绕它的旋涡中心运动的总动能。该旋涡场内的暗能量则分为两部分。一部分为旋涡中心的暗能量,以En1来表示。另一部分为旋涡中心之外的暗能量,用En2来表示。以En来表示星系的总暗能量,则有En=En1+En2。宇宙尘埃的运动是由暗能量来推动的。当En=Ep时,暗能量将全部转化为宇宙尘埃运动的动能。在这种情况下,旋涡场处于一种平衡状态,它既不收缩,也不膨胀。

下面分几种情况进行讨论。

(1).恒星的形成

当旋涡场内的宇宙尘埃很多时,Ep值比En大很多,即暗能量的旋转负荷太重。在旋涡场的旋转角速度不变的情况下,我们可以得到宇宙尘埃绕旋涡中心运动的总动能公式,如下所示:

Ep=MpVp2/2=Mp(ωR)2/2…………(6)

上式中,Vp为宇宙尘埃绕旋涡中心运动的平均速度,Mp为旋涡场中宇宙尘埃的总质量,ω为旋涡场的旋转角速度,R为宇宙尘埃到旋涡中心的平均距离。根据这条公式,当宇宙尘埃向旋涡中心靠近时,Ep值就会减少。当Ep值比En大很多时,旋涡场的转动负荷太重。在这种情况下,旋涡场必定收缩,宇宙尘埃必定向旋涡中心靠近,最后沉积到旋涡中心处变成沉积物。随着时间的推移,旋涡中心处的沉积物越来越多,最后变成了一颗恒星。恒星形成之后,当En=Ep时,其余的宇宙尘埃就再也不能沉积到旋涡中心。这些余下的宇宙尘埃就会在较小的旋涡场中形成围绕恒星运动的自转行星。

(2).星系的形成

当旋涡场很大,宇宙尘埃很多,En值与Ep相差不多时,旋涡场就处于一种平衡状态。在这种情况下,这些宇宙尘埃就无法靠近旋涡中心。这个大旋涡场中有无数个较小的旋涡场。象上述(1)所说的那样,每个小旋涡场形成一个恒星,无数个小旋涡场就会形成无数个恒星。这些小旋涡场都跟随大旋涡场旋转,由此而形成星系。

(3).宇宙旋涡的形成

当旋涡场内没有宇宙尘埃,即Ep=0时,旋涡场会不断地膨胀。当旋涡场内的宇宙尘埃很少时,它的总动能与暗能量相差太远,不足以阻止旋涡场的膨胀,结果,它会被旋涡场的旋转离心力抛出场外。到最后,旋涡场内将不存在任何宇宙尘埃。内部没有宇宙尘埃的旋涡场,它的旋转角速度是均匀的。旋涡场在离心力的作用下不断膨胀,它边缘的暗能量的运动速度也在不断增加。但当它的周围都有大小与它相差不多的旋涡场时,它的膨胀就会受阻。在这种情况下,旋涡场旋转的角速度以及暗能量运动的速度就相对稳定了下来,由此而形成一个不停地转动的宇宙旋涡。当星体顺着这种宇宙旋涡的旋转方向进入时,它就会被旋涡场的旋转之力弯转1800。接着,旋涡场用离心力推动它按原路返回。离开太阳系很远的慧星之所以能够返回太阳附近,所依赖的就是这种宇宙旋涡的力量。

(4).旋涡场的分类

我们把宇宙旋涡场按大小分为如下八种:

U旋涡场:又叫宇宙旋涡场,它的范围包括整个宇宙。

S旋涡场:又叫星糸团旋涡场,它的范围包括整个星糸团。

A旋涡场:又叫叫星系旋涡场,它的范围包括整个星系。

B旋涡场:又叫星团旋涡场,它的范围包括整个星团。

C旋涡场:又叫恒星旋涡场,它的范围被局限于恒星周围,包括所有行星的运行轨道。

D旋涡场:又叫行星旋涡场,它的范围被局限于行星周围,包括所有卫星的运行轨道。

E旋涡场:又叫卫星旋涡场,它的范围被局限于卫星周围。

F旋涡场:比E类旋涡场小的旋涡场。

(5).星系黑洞的形成

在每个星系的中心都有一个旋涡场,称之为星系旋涡中心。根据上述星系的形成原理,在它刚形成的时候,星系旋涡中心是没有宇宙尘埃的。在旋转离心力的作用下,它自然会向外膨胀。但在它的周围布满了很多大小与它相当的旋涡场,所以,它的膨胀受阻。各种旋涡场的旋转离心力在旋涡场边缘互相对抗,不断地进行对比和较量。经过很长一段时间之后,它们的对抗之力达到一种相对平衡状态。最后,星系旋涡中心的范围就被固定了下来。

由于星系旋涡中心是星系旋涡场的动力中心,所以,它内部贮藏的暗能量在星系中是最强大的。在强大暗能量的推动下,星系旋涡中心的旋转速度越来越快,暗能量在强大离心力的作用下不断地向旋涡中心的边缘集中,星系旋涡中心的中部地带的暗能量不断地被抽走,越来越少。最后,星系旋涡中心的内部就变成了一种真空状态,至此,它的旋转速度才能稳定下来。而星系旋涡中心的边缘就形成了一个由高速旋转的暗能量组成的圆盘,它把星系旋涡中心紧紧地包围了起来。这个高速旋转的圆盘带动周围的气体运动,使之发生激烈磨擦而发热,由此而变成了一个热气体圆盘。这个内部成为真空状态的星系旋涡中心就是一个暗能量黑洞,称之为星系黑洞。

星系黑洞被一个热气体圆盘所包围。这个圆盘的旋转速度有多大呢?在星系黑洞的形成过程中,它内部是没有质量的,即在旋涡中心内部不存在物质运动的动能。所以,它的虚拟质量为零。根据暗能量的动能公式En=MnVn2/2,当虚拟质量Mn=0时,圆盘中暗能量的速度Vn将达到无穷大。但实际上,宇宙黑洞会吸入物质,所以,圆盘的速度不可能达到无限大。将光子的性质与这个圆盘进行比较,两者的质量都接近零。由此类推,这个热气体圆盘的旋转速度应该接近光速。

由于星系黑洞是A旋涡场的旋转中心,所以我们又称之为A黑洞。

(6).星团黑洞

在星系中有很多B旋涡场。当B旋涡场内有很多宇宙尘埃,En值与Ep相差不多时,B旋涡场就处于一种平衡状态。在这种情况下,这些宇宙尘埃就无法靠近旋涡中心。B旋涡场内也有很多C旋涡场。象上述(1)所说的那样,每个C旋涡场形成一个恒星,很多C旋涡场就会形成很多恒星。这些恒星围绕B旋涡场的中心旋转,由此而形成一个星团。

在每个星团的中心都有一个旋涡场,称之为星团旋涡中心。很显然,星团旋涡中心内部是没有宇宙尘埃的。最后,它也象星系旋涡中心一样发展为一个暗能量黑洞,称之为星团黑洞。很显然,星团黑洞比星系黑洞小很多。星团黑洞的形成过程请参看第(5)部分内容。

由于星团黑洞是B旋涡场的旋转中心,所以我们又称之B黑洞。

(7).星系团黑洞

宇宙中有很多S旋涡场。当S旋涡场内聚集到很多星系时,就会形成一个星系团。产生星系团的条件是:星系绕星系团中心旋转的总动能约等于S类旋涡场的暗能量。在每个星系团的中心有一个旋涡场,称之为星系团旋涡中心。最后,它也象星系旋涡中心一样发展为一个暗能量黑洞,称之为星系团黑洞。由于它是S旋涡场的旋转中心,所以,又称之为S黑洞。星系团黑洞的形成过程请参看第(5)部分内容。

(8).宇宙中心黑洞

宇宙是一个大旋涡场,称之为U旋涡场。它的范围包括整个宇宙。所以,U旋涡场的中心就是宇宙的中心。在宇宙的中心有一个旋涡场,称之为宇宙中心旋涡场。最后,它也象星系旋涡中心一样发展为一个暗能量黑洞,称之为宇宙中心黑洞。由于它是U旋涡场的旋转中心,所以又称之为U黑洞。宇宙中心黑洞的形成过程请参看第(5)部分内容。

综上所述,暗能量黑洞分为四种类型,从大到小排列如下:U黑洞、S黑洞、A黑洞和B黑洞。U黑洞是宇宙中最大的黑洞,而且它是宇宙的旋转中心。

4.黑洞引力公式

根据上述理论,暗能量黑洞由如下两部分组成:一是热气体圆盘,二是被热气体圆盘所包围的宇宙真空。很显然,在热气体圆盘的内部和外部之间形成了一种压强差,它内部的压强比它外部低很多。我们用P1和P2分别来表示热气体圆盘的外部压强和内部压强,用P来表示它们的正压强差,则P=P1-P2。很显然,正压强的方向是从热气体圆盘的外部指向它的内部的。用V来表示热气体圆盘的旋转速度,用En1来表示它的暗能量。用L来表示黑洞的体积。则,我们可以得到如下公式:

P=KEn1V/L …………(7)

公式(7)中,K为一个比例系数,称之为暗能量黑洞的引力常数。公式(7)的意思是:黑洞内外的正压强差与黑洞内的暗能量和黑洞圆盘的旋转速度的乘积成正比,与黑洞的体积成反比。

当一个物体接触热气体圆盘时,两者之间就会产生一个接触面积,用S来表示。我们用F来表示黑洞对该物质的吸引力,则可得到如下公式:

F=PS=KSEn1V/L …………(8)

公式(8)就是黑洞对物体的引力公式。很显然,黑洞对物体的引力与物体的质量大小无关。对于巨大黑洞来说,它的暗能量非常强大,它的旋转速度接近光速。所以,这种黑洞的引力非常巨大。

黑洞吸引物体是有一个过程的。当物体在黑洞的周围但未接触黑洞的热气体圆盘时,物体被黑洞吸引的受力面积S=0,则黑洞对物体的引力F=0。它意味着,黑洞外部的物体运动与黑洞的引力无关。星系中所有的恒星都绕黑洞运动,是因为黑洞是星系旋涡场的旋转中心,而不是因为受到黑洞引力的作用。

当物体接触热气体圆盘时,它就会受到黑洞的引力。但刚接触时的引力很小,而圆盘周围的气流速度却非常大。在这种情况下,物体必然被圆盘气流带动,并跟随气流而去。随着物体与圆盘的接触面增大,黑洞对物体的引力也在增大。当黑洞对物体的引力比物体绕黑洞运动的离心力大时,它就会被吸入黑洞之中。这种情况表明,虽然黑洞的引力与物体的质量无关,但物体被黑洞引力吸入洞内的过程却与物体的质量有关。

在物体进入黑洞之后,该物体就会被黑洞内部的压强所包围。物体内部的压强与它在黑洞外部时的压强相等。所以,在物体的内部和外部之间就形成了一种压强差,根据公式(7)就可以求出它的值。正压强差的方向是从物体内部指向外部的,受力面积包括物体的全部表面。结果,物体的整个表面同时受到强横无比的拉力,在刹那之间它就会被这种强大的拉力撕得粉碎,最后变成了气态状。

当光子进入黑洞时,它也会被黑洞的引力所包围。光子内部的压强与它进入黑洞之前是一样。所以,在光子的内部和外部之间就会形成强横无比的压强差。结果,象上面所叙述的一样,在光子进入黑洞的刹那之间就会被黑洞的引力撕得粉碎。所以,在光子进入黑洞后,它是无法从黑洞中逃出来的。

结论:包括光子在内的任何物体,它们进入暗能量黑洞之后都会在刹那之间爆炸开来,变成气态状。

请问关于宇宙黑洞的介绍

黑洞是密度超大的星球,吸纳一切,光也逃不了.

(现在有科学家分析,宇宙中不存在黑洞,这需要进一步的证明,但是我们在学术上可以存在不同的意见)

首先,对黑洞进行一下形象的说明:

黑洞有巨大的引力,连光都被它吸引.黑洞中隐匿着巨大的引力场,这种引力大到任何东西,甚至连光,都难逃黑洞的手掌心。黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故。我们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞。据猜测,黑洞是死亡恒星或爆炸气团的剩余物,是在特殊的大质量超巨星坍塌收缩时产生的。

再从物理学观点来解释一下:

黑洞其实也是个星球(类似星球),只不过它的密度非常非常大, 靠近它的物体都被它的引力所约束(就好像人在地球上没有飞走一样),不管用多大的速度都无法脱离。对于地球来说,以第二宇宙速度(11.2km/s)来飞行就可以逃离地球,但是对于黑洞来说,它的第三宇宙速度之大,竟然超越了光速,所以连光都跑不出来,于是射进去的光没有反射回来,我们的眼睛就看不到任何东西,只是黑色一片。

因为黑洞是不可见的,所以有人一直置疑,黑洞是否真的存在。如果真的存在,它们到底在哪里?

黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。任何靠近它的物体都会被它吸进去,黑洞就变得像真空吸尘器一样

为了理解黑洞的动力学和理解它们是怎样使内部的所有事物逃不出边界,我们需要讨论广义相对论。广义相对论是爱因斯坦创建的引力学说,适用于行星、恒星,也适用于黑洞。爱因斯坦在1916年提出来的这一学说,说明空间和时间是怎样因大质量物体的存在而发生畸变。简言之,广义相对论说物质弯曲了空间,而空间的弯曲又反过来影响穿越空间的物体的运动。

让我们看一看爱因斯坦的模型是怎样工作的。首先,考虑时间(空间的三维是长、宽、高)是现实世界中的第四维(虽然难于在平常的三个方向之外再画出一个方向,但我们可以尽力去想象)。其次,考虑时空是一张巨大的绷紧了的体操表演用的弹簧床的床面。

爱因斯坦的学说认为质量使时空弯曲。我们不妨在弹簧床的床面上放一块大石头来说明这一情景:石头的重量使得绷紧了的床面稍微下沉了一些,虽然弹簧床面基本上仍旧是平整的,但其中央仍稍有下凹。如果在弹簧床中央放置更多的石块,则将产生更大的效果,使床面下沉得更多。事实上,石头越多,弹簧床面弯曲得越厉害。

同样的道理,宇宙中的大质量物体会使宇宙结构发生畸变。正如10块石头比1块石头使弹簧床面弯曲得更厉害一样,质量比太阳大得多的天体比等于或小于一个太阳质量的天体使空间弯曲得厉害得多。

如果一个网球在一张绷紧了的平坦的弹簧床上滚动,它将沿直线前进。反之,如果它经过一个下凹的地方 ,则它的路径呈弧形。同理,天体穿行时空的平坦区域时继续沿直线前进,而那些穿越弯曲区域的天体将沿弯曲的轨迹前进。

现在再来看看黑洞对于其周围的时空区域的影响。设想在弹簧床面上放置一块质量非常大的石头代表密度极大的黑洞。自然,石头将大大地影响床面,不仅会使其表面弯曲下陷,还可能使床面发生断裂。类似的情形同样可以宇宙出现,若宇宙中存在黑洞,则该处的宇宙结构将被撕裂。这种时空结构的破裂叫做时空的奇异性或奇点。

现在我们来看看为什么任何东西都不能从黑洞逃逸出去。正如一个滚过弹簧床面的网球,会掉进大石头形成的深洞一样,一个经过黑洞的物体也会被其引力陷阱所捕获。而且,若要挽救运气不佳的物体需要无穷大的能量。

我们已经说过,没有任何能进入黑洞而再逃离它的东西。但科学家认为黑洞会缓慢地释放其能量。著名的英国物理学家霍金在1974年证明黑洞有一个不为零的温度,有一个比其周围环境要高一些的温度。依照物理学原理,一切比其周围温度高的物体都要释放出热量,同样黑洞也不例外。一个黑洞会持续几百万万亿年散发能量,黑洞释放能量称为:霍金辐射。黑洞散尽所有能量就会消失。

处于时间与空间之间的黑洞,使时间放慢脚步,使空间变得有弹性,同时吞进所有经过它的一切。1969年,美国物理学家约翰 阿提 惠勒将这种贪得无厌的空间命名为“黑洞”。

我们都知道因为黑洞不能反射光,所以看不见。在我们的脑海中黑洞可能是遥远而又漆黑的。但英国著名物理学家霍金认为黑洞并不如大多数人想象中那样黑。通过科学家的观测,黑洞周围存在辐射,而且很可能来自于黑洞,也就是说,黑洞可能并没有想象中那样黑。霍金指出黑洞的放射性物质来源是一种实粒子,这些粒子在太空中成对产生,不遵从通常的物理定律。而且这些粒子发生碰撞后,有的就会消失在茫茫太空中。一般说来,可能直到这些粒子消失时,我们都未曾有机会看到它们。

霍金还指出,黑洞产生的同时,实粒子就会相应成对出现。其中一个实粒子会被吸进黑洞中,另一个则会逃逸,一束逃逸的实粒子看起来就像光子一样。对观察者而言,看到逃逸的实粒子就感觉是看到来自黑洞中的射线一样。

所以,引用霍金的话就是“黑洞并没有想象中的那样黑”,它实际上还发散出大量的光子。

根据爱因斯坦的能量与质量守恒定律。当物体失去能量时,同时也会失去质量。黑洞同样遵从能量与质量守恒定律,当黑洞失去能量时,黑洞也就不存在了。霍金预言,黑洞消失的一瞬间会产生剧烈的爆炸,释放出的能量相当于数百万颗氢弹的能量。

但你不要满怀期望地抬起头,以为会看到一场烟花表演。事实上,黑洞爆炸后,释放的能量非常大,很有可能对身体是有害的。而且,能量释放的时间也非常长,有的会超过100亿至200亿年,比我们宇宙的历史还长,而彻底散尽能量则需要数万亿年的时间

“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。

根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。

等恒星的半径小于一特定值(天文学上叫“施瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指任何物质一旦掉进去,就再不能逃出,包括光。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。

那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。

当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。

质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。

这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积很小、密度趋向很大。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。

与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。

在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。

更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背!

“黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。

按组成来划分,黑洞可以分为两大类。一是暗能量黑洞,二是物理黑洞。暗能量黑洞主要由高速旋转的巨大的暗能量组成,它内部没有巨大的质量。巨大的暗能量以接近光速的速度旋转,其内部产生巨大的负压以吞噬物体,从而形成黑洞,详情请看宇“宙黑洞论”。暗能量黑洞是星系形成的基础,也是星团、星系团形成的基础。物理黑洞由一颗或多颗天体坍缩形成,具有巨大的质量。当一个物理黑洞的质量等于或大于一个星系的质量时,我们称之为奇点黑洞。暗能量黑洞的体积很大,可以有太阳系那般大。但物理黑洞的体积却非常小,它可以缩小到一个奇点。

黑洞吸积

黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。目前观测到了辐射效率较高的薄盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。

天体物理学家用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动。吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星——包括地球——也是在新形成的恒星周围通过气体和岩石的聚集而形成的。但是当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。

然而黑洞并不是什么都吸收的,它也往外边散发质子.

爆炸的黑洞

黑洞会发出耀眼的光芒,体积会缩小,甚至会爆炸。当英国物理学家史迪芬·霍金于1974年做此语言时,整个科学界为之震动。黑洞曾被认为是宇宙最终的沉淀所:没有什么可以逃出黑洞,它们吞噬了气体和星体,质量增大,因而洞的体积只会增大,霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论。他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量,这种“霍金辐射”对大多数黑洞来说可以忽略不计,而小黑洞则以极高的速度辐射能量,直到黑洞的爆炸。

奇妙的萎缩的黑洞

当一个粒子从黑洞逃逸而没有偿还它借来的能量,黑洞就会从它的引力场中丧失同样数量的能量,而爱因斯坦的公式E=mc^2表明,能量的损失会导致质量的损失。因此,黑洞将变轻变小。

沸腾直至毁灭

所有的黑洞都会蒸发,只不过大的黑洞沸腾得较慢,它们的辐射非常微弱,因此另人难以觉察。但是随着黑洞逐渐变小,这个过程会加速,以至最终失控。黑洞委琐时,引力并也会变陡,产生更多的逃逸粒子,从黑洞中掠夺的能量和质量也就越多。黑洞委琐的越来越快,促使蒸发的速度变得越来越快,周围的光环变得更亮、更热,当温度达到10^15℃时,黑洞就会在爆炸中毁灭。

关于黑洞的文章:

自古以来,人类便一直梦想飞上蓝天,可没人知道在湛蓝的天幕之外还有一个硕大的黑色空间。在这个空间有光,有水,有生命。我们美丽的地球也是其中的一员。虽然宇宙是如此绚烂多彩,但在这里也同样是危机四伏的。小行星,红巨星,超新星大爆炸,黑洞……

黑洞,顾名思义就是看不见的具有超强吸引力的物质。自从爱因斯坦和霍金通过猜测并进行理论推导出有这样一种物质之后,科学家们就在不断的探寻,求索,以避免我们的星球被毁灭。

也许你会问,黑洞与地球毁灭有什么关系?让我告诉你,这可大有联系,待你了解他之后就会明白。

黑洞,实际上是一团质量很大的物质,其引力极大(仡今为止还未发现有比它引力更大的物质),形成一个深井。它是由质量和密度极大的恒星不断坍缩而形成的,当恒星内部的物质核心发生极不稳定变化之后会形成一个称为“奇点”的孤立点(有关细节请查阅爱因斯坦的广义相对论)。他会将一切进入视界的物质吸入,任何东西不能从那里逃脱出来(包括光)。他没有具体形状,也无法看见它,只能根据周围行星的走向来判断它的存在。也许你会因为它的神秘莫测而吓的大叫起来,但实际上根本用不着过分担心,虽然它有强大的吸引力但与此同时这也是判断它位置的一个重要证据,就算它对距地球极近的物质产生影响时,我们也还有足够的时间挽救,因为那时它的“正式边界”还离我们很远。况且,恒星坍缩后大部分都会成为中子星或白矮星。但这并不意味着我们就可以放松警惕了(谁知道下一刻被吸入的会不会是我们呢?),这也是人类研究它的原因之一。

我们已经了解了他可怕的吸引力,但没人清楚被吸入后会是怎样的一片景象。对此,学者、科学家们也是莫衷一是,众说纷纭的。有人认为,被他吸入的物质会被毁灭。有的人则认为,黑洞是通往另一宇宙空间的通道。到底被吸入之后会如何我们也不得而知,也许只有那些被吸进去的物质才了解吧!

黑洞只是宇宙千千万万奥秘中的一员,但我们探求它的小部分秘密就不知花费了多少时间,一代人的力量是有限的,但千百万代人的力量汇聚在一起就一定会成功,相信我们以及我们的后代在不久的将来会将黑洞以至整个宇宙的奥秘完全探求出来。

恒星,白矮星,中子星,夸克星,黑洞是依次的五个密度当量星体,密度最小的当然是恒星,黑洞是物质的终极形态,黑洞之后就会发生宇宙大爆炸,能量释放出去后,又进入一个新的循环.

另外黑洞在网络中指电子邮件消息丢失或Usenet公告消失的地方。

黑洞这一术语是不久以前才出现的。它是1969年美国科学家约翰·惠勒为形象描述至少可回溯到200年前的这个思想时所杜撰的名字。那时候,共有两种光理论:一种是牛顿赞成的光的微粒说;另一种是光的波动说。我们现在知道,实际上这两者都是正确的。由于量子力学的波粒二象性,光既可认为是波,也可认为是粒子。在光的波动说中,不清楚光对引力如何响应。但是如果光是由粒子组成的,人们可以预料,它们正如同炮弹、火箭和行星那样受引力的影响。起先人们以为,光粒子无限快地运动,所以引力不可能使之慢下来,但是罗麦关于光速度有限的发现表明引力对之可有重要效应。

1783年,剑桥的学监约翰·米歇尔在这个假定的基础上,在《伦敦皇家学会哲学学报》上发表了一篇文章。他指出,一个质量足够大并足够紧致的恒星会有如此强大的引力场,以致于连光线都不能逃逸——任何从恒星表面发出的光,还没到达远处即会被恒星的引力吸引回来。米歇尔暗示,可能存在大量这样的恒星,虽然会由于从它们那里发出的光不会到达我们这儿而使我们不能看到它们,但我们仍然可以感到它们的引力的吸引作用。这正是我们现在称为黑洞的物体。它是名符其实的——在空间中的黑的空洞。几年之后,法国科学家拉普拉斯侯爵显然独自提出和米歇尔类似的观念。非常有趣的是,拉普拉斯只将此观点纳入他的《世界系统》一书的第一版和第二版中,而在以后的版本中将其删去,可能他认为这是一个愚蠢的观念。(此外,光的微粒说在19世纪变得不时髦了;似乎一切都可以以波动理论来解释,而按照波动理论,不清楚光究竟是否受到引力的影响。)

事实上,因为光速是固定的,所以,在牛顿引力论中将光类似炮弹那样处理实在很不协调。(从地面发射上天的炮弹由于引力而减速,最后停止上升并折回地面;然而,一个光子必须以不变的速度继续向上,那么牛顿引力对于光如何发生影响呢?)直到1915年爱因斯坦提出广义相对论之前,一直没有关于引力如何影响光的协调的理论。甚至又过了很长时间,这个理论对大质量恒星的含意才被理解。

为了理解黑洞是如何形成的,我们首先需要理解一个恒星的生命周期。起初,大量的气体(大部分为氢)受自身的引力吸引,而开始向自身坍缩而形成恒星。当它收缩时,气体原子相互越来越频繁地以越来越大的速度碰撞——气体的温度上升。最后,气体变得如此之热,以至于当氢原子碰撞时,它们不再弹开而是聚合形成氦。如同一个受控氢弹爆炸,反应中释放出来的热使得恒星发光。这增添的热又使气体的压力升高,直到它足以平衡引力的吸引,这时气体停止收缩。这有一点像气球——内部气压试图使气球膨胀,橡皮的张力试图使气球缩小,它们之间存在一个平衡。从核反应发出的热和引力吸引的平衡,使恒星在很长时间内维持这种平衡。然而,最终恒星会耗尽了它的氢和其他核燃料。貌似大谬,其实不然的是,恒星初始的燃料越多,它则燃尽得越快。这是因为恒星的质量越大,它就必须越热才足以抵抗引力。而它越热,它的燃料就被用得越快。我们的太阳大概足够再燃烧50多亿年,但是质量更大的恒星可以在1亿年这么短的时间内用尽其燃料, 这个时间尺度比宇宙的年龄短得多了。当恒星耗尽了燃料,它开始变冷并开始收缩。随后发生的情况只有等到本世纪20年代末才初次被人们理解。

1928年,一位印度研究生——萨拉玛尼安·强德拉塞卡——乘船来英国剑桥跟英国天文学家阿瑟·爱丁顿爵士(一位广义相对论家)学习。(据记载,在本世纪20年代初有一位记者告诉爱丁顿,说他听说世界上只有三个人能理解广义相对论,爱丁顿停了一下,然后回答:“我正在想这第三个人是谁”。)在他从印度来英的旅途中,强德拉塞卡算出在耗尽所有燃料之后,多大的恒星可以继续对抗自己的引力而维持自己。这个思想是说:当恒星变小时,物质粒子靠得非常近,而按照泡利不相容原理,它们必须有非常不同的速度。这使得它们互相散开并企图使恒星膨胀。一颗恒星可因引力作用和不相容原理引起的排斥力达到平衡而保持其半径不变,正如在它的生命的早期引力被热所平衡一样。

然而,强德拉塞卡意识到,不相容原理所能提供的排斥力有一个极限。恒星中的粒子的最大速度差被相对论限制为光速。这意味着,恒星变得足够紧致之时,由不相容原理引起的排斥力就会比引力的作用小。强德拉塞卡计算出;一个大约为太阳质量一倍半的冷的恒星不能支持自身以抵抗自己的引力。(这质量现在称为强德拉塞卡极限。)苏联科学家列夫·达维多维奇·兰道几乎在同时也得到了类似的发现。

这对大质量恒星的最终归宿具有重大的意义。如果一颗恒星的质量比强德拉塞卡极限小,它最后会停止收缩并终于变成一颗半径为几千英哩和密度为每立方英寸几百吨的“白矮星”。白矮星是它物质中电子之间的不相容原理排斥力所支持的。我们观察到大量这样的白矮星。第一颗被观察到的是绕着夜空中最亮的恒星——天狼星转动的那一颗。

兰道指出,对于恒星还存在另一可能的终态。其极限质量大约也为太阳质量的一倍或二倍,但是其体积甚至比白矮星还小得多。这些恒星是由中子和质子之间,而不是电子之间的不相容原理排斥力所支持。所以它们被叫做中子星。它们的半径只有10英哩左右,密度为每立方英寸几亿吨。在中子星被第一次预言时,并没有任何方法去观察它。实际上,很久以后它们才被观察到。

另一方面,质量比强德拉塞卡极限还大的恒星在耗尽其燃料时,会出现一个很大的问题:在某种情形下,它们会爆炸或抛出足够的物质,使自己的质量减少到极限之下,以避免灾难性的引力坍缩。但是很难令人相信,不管恒星有多大,这总会发生。怎么知道它必须损失重量呢?即使每个恒星都设法失去足够多的重量以避免坍缩,如果你把更多的质量加在白矮星或中子星上,使之超过极限将会发生什么?它会坍缩到无限密度吗?爱丁顿为此感到震惊,他拒绝相信强德拉塞卡的结果。爱丁顿认为,一颗恒星不可能坍缩成一点。这是大多数科学家的观点:爱因斯坦自己写了一篇论文,宣布恒星的体积不会收缩为零。其他科学家,尤其是他以前的老师、恒星结构的主要权威——爱丁顿的敌意使强德拉塞卡抛弃了这方面的工作,转去研究诸如恒星团运动等其他天文学问题。然而,他获得1983年诺贝尔奖,至少部分原因在于他早年所做的关于冷恒星的质量极限的工作。

强德拉塞卡指出,不相容原理不能够阻止质量大于强德拉塞卡极限的恒星发生坍缩。但是,根据广义相对论,这样的恒星会发生什么情况呢?这个问题被一位年轻的美国人罗伯特·奥本海默于1939年首次解决。然而,他所获得的结果表明,用当时的望远镜去观察不会再有任何结果。以后,因第二次世界大战的干扰,奥本海默本人非常密切地卷入到原子弹计划中去。战后,由于大部分科学家被吸引到原子和原子核尺度的物理中去,因而引力坍缩的问题被大部分人忘记了。但在本世纪60年代,现代技术的应

图6.1用使得天文观测范围和数量大大增加, 重新激起人们对天文学和宇

宙学的大尺度问题的兴趣。奥本海默的工作被重新发现,并被一些人推广。

现在,我们从奥本海默的工作中得到一幅这样的图象:恒星的引力场改变了光线的路径,使之和原先没有恒星情况下的路径不一样。光锥是表示光线从其顶端发出后在空间——时间里传播的轨道。光锥在恒星表面附近稍微向内偏折,在日食时观察远处恒星发出的光线,可以看到这种偏折现象。当该恒星收缩时,其表面的引力场变得很强,光线向内偏折得更多,从而使得光线从恒星逃逸变得更为困难。对于在远处的观察者而言,光线变得更黯淡更红。最后,当这恒星收缩到某一临界半径时,表面的引力场变得如此之强,使得光锥向内偏折得这么多,以至于光线再也逃逸不出去(图6.1) 。根据相对论,没有东西会走得比光还快。这样,如果光都逃逸不出来,其他东西更不可能逃逸,都会被引力拉回去。也就是说,存在一个事件的集合或空间——时间区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者。现在我们将这区域称作黑洞,将其边界称作事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合。

当你观察一个恒星坍缩并形成黑洞时,为了理解你所看到的情况,切记在相对论中没有绝对时间。每个观测者都有自己的时间测量。由于恒星的引力场,在恒星上某人的时间将和在远处某人的时间不同。假定在坍缩星表面有一无畏的航天员和恒星一起向内坍缩,按照他的表,每一秒钟发一信号到一个绕着该恒星转动的空间飞船上去。在他的表的某一时刻,譬如11点钟,恒星刚好收缩到它的临界半径,此时引力场强到没有任何东西可以逃逸出去,他的信号再也不能传到空间飞船了。当11点到达时,他在空间飞船中的伙伴发现,航天员发来的一串信号的时间间隔越变越长。但是这个效应在10点59分59秒之前是非常微小的。在收到10点59分58秒和10点59分59秒发出的两个信号之间,他们只需等待比一秒钟稍长一点的时间,然而他们必须为11点发出的信号等待无限长的时间。按照航天员的手表,光波是在10点59分59秒和11点之间由恒星表面发出;从空间飞船上看,那光波被散开到无限长的时间间隔里。在空间飞船上收到这一串光波的时间间隔变得越来越长,所以恒星来的光显得越来越红、越来越淡,最后,该恒星变得如此之朦胧,以至于从空间飞船上再也看不见它,所余下的只是空间中的一个黑洞。然而,此恒星继续以同样的引力作用到空间飞船上,使飞船继续绕着所形成的黑洞旋转。

但是由于以下的问题,使得上述情景不是完全现实的。你离开恒星越远则引力越弱,所以作用在这位无畏的航天员脚上的引力总比作用到他头上的大。在恒星还未收缩到临界半径而形成事件视界之前,这力的差就已经将我们的航天员拉成意大利面条那样,甚至将他撕裂!然而,我们相信,在宇宙中存在质量大得多的天体,譬如星系的中心区域,它们遭受到引力坍缩而产生黑洞;一位在这样的物体上面的航天员在黑洞形成之前不会被撕开。事实上,当他到达临界半径时,不会有任何异样的感觉,甚至在通过永不回返的那一点时,都没注意到。但是,随着这区域

黑洞概述

“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。

根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。

等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。

那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。

我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。

质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。

这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。

与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。

在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。

更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背!

“黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。

黑洞系列之黑洞介绍

霍金在第二个黄金时代中对视界定义,是我们需要知道的对黑洞的描述十分

重要的一个重要思想,因为它还引出了另一个更加重要的结论:黑洞(热力学)

三定律,而这个定律最终带领我们找到了黑洞蒸发,即霍金辐射。

黑洞的视界,可以分为两个,一个是惠勒最早提出的视界——显视界,而另

一个是霍金的矫健思想的结晶——绝对视界。

显视界的定义,是光子被拉回到原来位置的地方(这个牵扯到了相对论引力

理论对时空在黑洞作用下的描述,在介绍相对论的时候会介绍到)。

绝对视界的定义,是物体是否可以和外界时空联系的分界面。

从定义上看,一些哲学思想比较好的人也许就可以看出不同了:显视界是顺

序的,而绝对视界是“目的论”的。

进一步分析可以知道:绝对视界的“果”——视界的位置,比视界的“因”

——物体是否落入黑洞,先表现了出来。

这个就是绝对视界和显视界的根本区别,也是它优越的地方。

显视界,在物体落入黑洞,即穿过了它以后,会突然地、毫无征兆地从原来

的位置跃迁到一个新的位置,然后安定下来。在这个时候,它的变化是不容易理

解的,而且在处理“动态”的黑洞(即在脉动、刚形成时候的黑洞)碰撞的时候,

会对引力波的辐射、黑洞的位置等问题带来许多麻烦和不方便。而且物理定律似

乎也不允许这种突变的发生。

但是对于绝对视界,就没有这个问题了。它的位置取决于物体的运动是否会

导致物体落入黑洞,而不是物体是否已经落入了黑洞。如果一个运动的物体会落

入黑洞,那么在它落入以前,绝对视界就会膨胀,来“迎接”这个物体。而这种

变化是连续的,而且对于那些关于黑洞视界的问题中,它的力量是巨大的,虽然

结果在原因以前出现在了这个宇宙中。

在这个战场上,黑洞击败了彭罗斯、泽尔多维奇、伊斯雷尔等杰出人物。其

中彭罗斯带来的数学工具曾经使得物理学上一片光辉,最终成功证明了黑洞无毛

定理,发现了宇宙监督定理等重要定理(可惜他没有最终证明这个他所提出的猜

想是否真的可能成为定理,但是霍金人从许多角度对它进行估算,证明这个猜想

十分可能是一个定理),是一个顶尖的数学家、物理学家,伊斯雷尔也是一个数

学家兼物理学家。泽尔多维奇也是一个理论物理大家,一个思想十分活跃的人,

苏联物理学的代表。

但是霍金不是所有战场的胜利者。他在黑洞热力学这个方面,被惠勒的研究

生贝肯斯坦击败了。不过霍金毕竟不是一个平凡的人,他后来在这个战场上建立

了黑洞三定律,将黑洞和热力学完全结合了起来。

在黑洞建立绝对视界的同时,他也解决了黑洞引力辐射的能量多少问题,同

时,他发现了黑洞视界面积定理。他发现这个定理和热力学第二定律十分类似,

同时,其他黑洞研究者也发现在描述黑洞性质变化的时候(比如描述吸积盘形成

的过程中),黑洞的变化方程和热力学的方程十分相似。但是这些仅仅被霍金以

及他的同事们认为是巧合而已。但是贝肯斯坦不这么认为,他在导师惠勒的鼓励

下,计算了如果黑洞符合热力学定律,视界和熵之间的一个对应关系(惠勒没有

帮助他计算,这个是惠勒在教育方面的一个特点,就是鼓励自己的学生来发挥他

们自己的才能,而他自己在关键的时候给予学生一些思想上的帮助),得到了熵

和黑洞视界面积的近似关系:熵近似等于视界面积与普朗克面积(在下文介绍量

子理论的时候会介绍这个十分重要的物理常数)的比值。

但是如果同意了黑洞符合热力学公式,那么就相当于同意了黑洞具有一个温

度。但是根据热力学公式,我们可以知道:任何比周围温度高的物体,必定向周

围发出辐射。而宇宙的背景温度约为3K,而如果贝肯斯坦的计算是正确的,那么

黑洞的温度一定远高于这个值,那么似乎黑洞必定会辐射物质,而不是吸收。

贝肯斯坦和霍金在这个问题上都陷入了僵局。

在广义相对论在引力领域建立起绝对威望的同时,量子理论也已经发展成熟

了,成熟到了足以来到引力的领域,参加黑洞研究的地步了。

第一个使用量子理论来研究黑洞问题的,是苏联的泽尔多维奇,一个有着强

烈物理直觉的领导者,苏联理论物理学的权威,苏联黑洞研究小组的教练。而他

使用这个理论来解决的第一个引力问题,是克尔黑洞的引力辐射。就是这个问题,

为贝肯斯坦和霍金的战争划上了圆满的句号,同时启发霍金发现并掌握了量子辐

射。

泽尔多维奇在应用量子理论解释引力问题的时候,惠勒在量子理论上的工作

是不可磨灭的。

惠勒第一个提出了量子真空涨落这个概念。

真空涨落说的是,在任意一个绝对真空中,即使你用无限大的能量来躯干这

个区域中的物质,量子理论总会使得这个区域的时空本身发生一个能量的起伏—

—海森堡能量借贷——使得这个区域的各个部分的能量不同,但是总合保持为0.

在白矮星中,电子被压迫在一个十分小的区域中,但是电磁波的量子真空涨

落迫使电子继续随机地运动,而且速度十分大,进入了相对论范围中。这个就是

“电子简并运动”,产生的一个向外的压力就是“电子简并压”。这个也是当年

爱因斯坦和爱丁顿反对黑洞的证据。在中子星中,也是这个简并运动迫使中子星

停止继续塌缩。

真空涨落无所不在,在生活中的最基本应用就是荧光灯。这种效应在量子理

论发展完全,惠勒提出真空涨落概念、海森堡提出能量借贷概念以前,一直困扰

着物理学家,被称为自发发射。

泽尔多维奇在接受了惠勒的思想后,先对旋转的金属球进行计算,发现了金

属球的旋转将周围空间发生的量子真空涨落加速、放大、催化和真实化,成为了

反向旋转能和向外发射的电磁波,同时自己的旋转速度变慢,直到停止为止。

随后,泽尔多维奇用类比,推出了克尔黑洞会辐射各类辐射(主要是电磁波

和引力波,其次是中微子等辐射)的结论。这个结论的试探性太强,没有人注意

到。同时,美国的米斯纳也提出了同样的想法,并且有了一定的反应。

霍金在去莫斯科参加一个会议的时候,和泽尔多维奇以及他的学生斯塔罗宾

斯基有了联系,得知泽尔多维奇和他的学生们已经开始结合量子理论和相对论,

并且已经得到了黑洞会辐射的猜想,十分感兴趣,于是在回到剑桥边开始着手研

究。

在大家都同意泽尔多维奇的同时,霍金的计算带来了另一个更加使人震惊的

结论:即使黑洞没有旋转,它也在辐射,而且有一个确定的熵和温度:熵和视界

面积的比正比于黑洞质量的平方,而温度和视界表面引力的比反比于黑洞质量。

到这里,霍金和贝肯斯坦的争论结束了,贝肯斯坦胜利了,他建立了黑洞三

定律,但是霍金却得到了霍金辐射,一个十分重要的定理,同时部分成功、正确

地结合了量子理论和相对论,得到了一个更加重要的理论——弯曲时空的量子场

定律。

量子理论还带来了许多东西,比如和实际情况最吻合的BKL 黑洞,一个比纽

曼黑洞更加具体、现实的黑洞。

卡拉特尼科夫和栗弗席兹在研究恒星的随机扰动(在史瓦西、克尔和RN黑洞

中,都没有涉及到恒星塌缩时的物质运动,即扰动)是发现,这些扰动会干扰黑

洞奇点的产生,从而根据相对论,恒星所在的时空会成为一个封闭的小空间在时

空组中运动(时空组这个名字是我起的,在后面会介绍到。其实他就是一些同胚

——拓扑术语——时空的集合)到达其他时空中在爆发出来。但是苏联和欧洲的

隔绝使得他们没有得到彭罗斯的一个重要的证明和他的一个重要的数学工具——

整体方法,因而他们的计算错了。并且,在和索恩的争论中知道了一些整体方法

的内容,而研究生别林斯基一同找到了一个在我们这个宇宙中最基本的黑洞典型

:BKL 黑洞。

BKL 黑洞是拓扑学的胜利,是数学和物理的融合,也是相对论和量子理论的

第一次亲密接触。

好了,到了这里,对于黑洞以及发现、发展黑洞的历史的介绍已经到了尾声

了,先让我们来看看黑洞的形成,在来整体认识一些最典型、最普通、最可能在

自然界出现的黑洞:BKL 黑洞的一些性质以及相关知识。

关于“黑洞大还是恒星大”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[指冰凉]投稿,不代表世源号立场,如若转载,请注明出处:https://shiyua.com/cshi/202501-5698.html

(300)

文章推荐

  • “科学管理”思想的主要观点和贡献有何意义-

    网上科普有关““科学管理”思想的主要观点和贡献有何意义?”话题很是火热,小编也是针对“科学管理”思想的主要观点和贡献有何意义?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。观点1、工作定额制2、标准化原理3、能力与工作相符4、实行差别计件工资报酬制度5、把

    2025年01月13日
    393
  • 西安交大考研好考吗录取比例高吗?

    网上科普有关“西安交大考研好考吗录取比例高吗?”话题很是火热,小编也是针对西安交大考研好考吗录取比例高吗?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。西安交通大学作为全国重点大学,实力强劲,因此每年报考该校研究生考试的人数也是多不胜数,今天小编要为大家介绍

    2025年01月14日
    325
  • 北京历史文化名城保护条例的第二章 保护内容

    网上科普有关“北京历史文化名城保护条例的第二章保护内容”话题很是火热,小编也是针对北京历史文化名城保护条例的第二章保护内容寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。第十条北京历史文化名城的保护内容包括:旧城的整体保护、历史文化街区的保护、文物保护单

    2025年01月21日
    430
  • 牛牛房卡链接充值,请记住收藏这10个渠道

    在数字化时代,网络游戏已成为许多人休闲娱乐的重要方式之一,其中,“牛牛”作为一款广受欢迎的棋牌游戏,因其独特的玩法和互动性,吸引了大量玩家的参与。而在某些牛牛游戏平台中,为了提升用户体验或解锁更多游戏功能,房卡系统应运而生。房卡作为虚拟商品,玩家可以通过购买房卡来创建私人房间,邀请朋友一同对战,享受

    2025年01月17日
    41
  • 新海米厅房卡哪里买~房卡获取方法

    在探讨“新海米厅房卡哪里买”这一问题时,我们首先需要明确的是,房卡作为一种特定场所或平台的访问凭证,其购买渠道往往受到该场所或平台的严格管理和规定。新海米厅作为一个可能的娱乐或休闲场所,其房卡的获取和使用同样需要遵循一定的规则和流程。在一般情况下,购买新海米厅房卡的首选途径是通过官方渠道。这通常

    2025年01月17日
    34
  • 龙珠大厅房卡价格,推荐10个购买渠道

    在探讨“龙珠大厅房卡价格”这一话题时,我们首先需要了解的是,房卡作为许多在线棋牌游戏中的虚拟商品,扮演着开启私人游戏房间的关键角色。对于热衷于在龙珠大厅这类平台上进行休闲娱乐的玩家而言,房卡不仅是参与游戏的必要条件,更是享受专属游戏空间和竞技乐趣的媒介。然而,关于具体的价格信息,由于市场波动、平台政

    2025年01月19日
    30
  • 众亿房卡代理商”详细房卡怎么购买教程推荐一款“

    在当今的数字化时代,各行各业都涌动着创新与变革的浪潮,而娱乐产业作为人们日常生活的重要组成部分,也不例外。随着网络科技的飞速发展,线上棋牌游戏逐渐成为许多人休闲娱乐的首选。在这一背景下,“众亿房卡代理商”作为一个连接游戏平台与广大玩家的桥梁,逐渐走入公众的视野,扮演着举足轻重的角色。众亿房卡代理

    2025年01月19日
    54
  • 荣耀房卡批发,推荐10个购买渠道

    在当今的数字化时代,各行各业都在积极探索线上转型之路,娱乐产业也不例外。随着网络游戏的蓬勃发展,虚拟物品交易逐渐成为了一个不可忽视的市场,其中,“荣耀房卡”作为某热门网络游戏内的特殊道具,因其独特的功能和使用价值,在玩家群体中引发了广泛的关注与需求。这一现象不仅催生了“荣耀房卡批发”业务的兴起,也映

    2025年01月20日
    53
  • 海洋中有哪些神奇的动物?

    网上有关“海洋中有哪些神奇的动物?”话题很是火热,小编也是针对海洋中有哪些神奇的动物?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。兽中之“王”——蓝鲸蓝鲸是人类已知的世界上最大的动物,全身呈蓝灰色。目前捕到最大蓝鲸的时间是1904年,地点在大西洋的福克兰群

    2025年01月28日
    271
  • 高科技抗衰老全揭秘

    网上有关“高科技抗衰老全揭秘”话题很是火热,小编也是针对高科技抗衰老全揭秘寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。高科技抗衰老全揭秘高科技抗衰老全揭秘,护肤是没有标准的,现在的天气会对我们的皮肤造成影响,简简单

    2025年01月28日
    298

发表回复

本站作者后才能评论

评论列表(4条)

  • 指冰凉
    指冰凉 2025年01月31日

    我是世源号的签约作者“指冰凉”!

  • 指冰凉
    指冰凉 2025年01月31日

    希望本篇文章《黑洞大还是恒星大》能对你有所帮助!

  • 指冰凉
    指冰凉 2025年01月31日

    本站[世源号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育

  • 指冰凉
    指冰凉 2025年01月31日

    本文概览:网上有关“黑洞大还是恒星大”话题很是火热,小编也是针对黑洞大还是恒星大寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。黑洞是一种引力极强...

    联系我们

    邮件:世源号@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们